Using multiple measures for quantitative trait association analyses: application to estimated glomerular filtration rate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07

AUTHORS

Adrienne Tin, Elizabeth Colantuoni, Eric Boerwinkle, Anna Kottgen, Nora Franceschini, Brad C Astor, Josef Coresh, Wen Hong Linda Kao

ABSTRACT

Studies of multiple measures of a quantitative trait can have greater precision and thus statistical power compared with single-measure studies, but this has rarely been studied in the relation to quantitative trait measurement error models in genetic association studies. Using estimated glomerular filtration rate (eGFR), a quantitative measure of kidney function, as an example we constructed measurement error models of a quantitative trait with systematic and random error components. We then examined the effects on precision of the parameter estimate between genetic loci and eGFR, resulting from varying the correlation and contribution of the error components. We also compared the empirical results from three genome-wide association studies (GWAS) of kidney function in 9049 European Americans: a single measure model, a three-measure model of the same biomarker of kidney function and a six-measure model of different biomarkers of kidney function. Simulations showed that given the same amount of overall errors, inclusion of measures with less correlated systematic errors led to greater gain in precision. The empirical GWAS results confirmed that both the three- and six-measure models detected more eGFR-associated genomic loci with stronger statistical association than the single-measure model despite some heterogeneity among the measures. Multiple measures of a quantitative trait can increase the statistical power of a study without additional participant recruitment. However, careful attention must be paid to the correlation of systematic errors and inconsistent associations when different biomarkers or methods are used to measure the quantitative trait. More... »

PAGES

461

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/jhg.2013.23

DOI

http://dx.doi.org/10.1038/jhg.2013.23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033841951

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23535967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "European Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glomerular Filtration Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tin", 
        "givenName": "Adrienne", 
        "id": "sg:person.01141403460.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141403460.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Colantuoni", 
        "givenName": "Elizabeth", 
        "id": "sg:person.0644633633.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644633633.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "Human Genetics Center, University of Texas School of Public Health, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boerwinkle", 
        "givenName": "Eric", 
        "id": "sg:person.01104262534.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104262534.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "Department of Internal Medicine, Renal Division, University Medical Center Freiburg, Freiburg, Germany", 
            "Renal Division, Freiburg University Hospital, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kottgen", 
        "givenName": "Anna", 
        "id": "sg:person.01145454311.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145454311.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franceschini", 
        "givenName": "Nora", 
        "id": "sg:person.01065203525.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065203525.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astor", 
        "givenName": "Brad C", 
        "id": "sg:person.01027632421.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027632421.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coresh", 
        "givenName": "Josef", 
        "id": "sg:person.012700421217.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700421217.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kao", 
        "givenName": "Wen Hong Linda", 
        "id": "sg:person.010012617237.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010012617237.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0230424100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004325693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006886726", 
          "https://doi.org/10.1038/ng.555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2011.178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008589096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2660(07)00404-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009752328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/jdi-100104725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009800402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2005.0525144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011772959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018022915", 
          "https://doi.org/10.1186/1471-2105-11-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018022915", 
          "https://doi.org/10.1186/1471-2105-11-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018122872", 
          "https://doi.org/10.1038/nature09792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019111792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470013192.bsa492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019590210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470013192.bsa492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019590210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025253932", 
          "https://doi.org/10.1038/ng.610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025253932", 
          "https://doi.org/10.1038/ng.610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.1990.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025557543", 
          "https://doi.org/10.1038/ki.1990.182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/tpbi.2001.1542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027740393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0272-6386(02)70081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027844151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0808934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034119584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2010.02.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035811617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.2009.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040638758", 
          "https://doi.org/10.1038/ki.2009.262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780110508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046756479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049041078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049041078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2007.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051956308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052526981", 
          "https://doi.org/10.1038/ng.568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2011.11.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053080725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059958072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069978950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075017372", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "Studies of multiple measures of a quantitative trait can have greater precision and thus statistical power compared with single-measure studies, but this has rarely been studied in the relation to quantitative trait measurement error models in genetic association studies. Using estimated glomerular filtration rate (eGFR), a quantitative measure of kidney function, as an example we constructed measurement error models of a quantitative trait with systematic and random error components. We then examined the effects on precision of the parameter estimate between genetic loci and eGFR, resulting from varying the correlation and contribution of the error components. We also compared the empirical results from three genome-wide association studies (GWAS) of kidney function in 9049 European Americans: a single measure model, a three-measure model of the same biomarker of kidney function and a six-measure model of different biomarkers of kidney function. Simulations showed that given the same amount of overall errors, inclusion of measures with less correlated systematic errors led to greater gain in precision. The empirical GWAS results confirmed that both the three- and six-measure models detected more eGFR-associated genomic loci with stronger statistical association than the single-measure model despite some heterogeneity among the measures. Multiple measures of a quantitative trait can increase the statistical power of a study without additional participant recruitment. However, careful attention must be paid to the correlation of systematic errors and inconsistent associations when different biomarkers or methods are used to measure the quantitative trait. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/jhg.2013.23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684550", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345504", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541398", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345491", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691245", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345564", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345497", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345526", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541272", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2536122", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345510", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345516", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705143", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294984", 
        "issn": [
          "1434-5161", 
          "1435-232X"
        ], 
        "name": "Journal of Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Using multiple measures for quantitative trait association analyses: application to estimated glomerular filtration rate", 
    "pagination": "461", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a13687a32697843c4ea82068ef801e74b05a7c2b9aaa8150a445e94c31f0b164"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23535967"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9808008"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/jhg.2013.23"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033841951"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/jhg.2013.23", 
      "https://app.dimensions.ai/details/publication/pub.1033841951"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000437.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/jhg201323"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/jhg.2013.23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/jhg.2013.23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/jhg.2013.23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/jhg.2013.23'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      21 PREDICATES      65 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/jhg.2013.23 schema:about N0fcbbc8e786147d28da430a80fec3fe5
2 N21251becccde4c2694d68403609509f9
3 N2f2c7cb40c9949ddadaa4886ce2922e9
4 N3d274eacd93d428b85268cfddd2ea678
5 N4d6322a650d14143a88c21e9ee629ad9
6 N7018d7e87d39422fac1089b7e6f52761
7 Na44aee820a524fdcad1562a71af2bcf5
8 Nb2dfc061d6de4731b8008b3effed0f51
9 Nd4af120069a44bdc8a1debde1ac4dcc9
10 Nde99ff77a7534f1b860868d8881652b7
11 Nf0c1903bafd24aff87b5c051cfbf1f18
12 anzsrc-for:01
13 anzsrc-for:0104
14 schema:author Naed05ce0470f43adac18dd78b5b6f67d
15 schema:citation sg:pub.10.1038/ki.1990.182
16 sg:pub.10.1038/ki.2009.262
17 sg:pub.10.1038/nature09792
18 sg:pub.10.1038/ng.555
19 sg:pub.10.1038/ng.568
20 sg:pub.10.1038/ng.610
21 sg:pub.10.1186/1471-2105-11-134
22 https://app.dimensions.ai/details/publication/pub.1075017372
23 https://doi.org/10.1002/0470013192.bsa492
24 https://doi.org/10.1002/gepi.20525
25 https://doi.org/10.1002/sim.4780110508
26 https://doi.org/10.1006/tpbi.2001.1542
27 https://doi.org/10.1016/s0065-2660(07)00404-x
28 https://doi.org/10.1016/s0272-6386(02)70081-4
29 https://doi.org/10.1038/oby.2011.178
30 https://doi.org/10.1053/j.ajkd.2007.11.018
31 https://doi.org/10.1053/j.ajkd.2010.02.347
32 https://doi.org/10.1053/j.ajkd.2011.11.042
33 https://doi.org/10.1056/nejmp0808934
34 https://doi.org/10.1073/pnas.0230424100
35 https://doi.org/10.1081/jdi-100104725
36 https://doi.org/10.1093/bioinformatics/btn563
37 https://doi.org/10.1093/oxfordjournals.aje.a115184
38 https://doi.org/10.1373/clinchem.2005.0525144
39 https://doi.org/10.2307/2533554
40 schema:datePublished 2013-07
41 schema:datePublishedReg 2013-07-01
42 schema:description Studies of multiple measures of a quantitative trait can have greater precision and thus statistical power compared with single-measure studies, but this has rarely been studied in the relation to quantitative trait measurement error models in genetic association studies. Using estimated glomerular filtration rate (eGFR), a quantitative measure of kidney function, as an example we constructed measurement error models of a quantitative trait with systematic and random error components. We then examined the effects on precision of the parameter estimate between genetic loci and eGFR, resulting from varying the correlation and contribution of the error components. We also compared the empirical results from three genome-wide association studies (GWAS) of kidney function in 9049 European Americans: a single measure model, a three-measure model of the same biomarker of kidney function and a six-measure model of different biomarkers of kidney function. Simulations showed that given the same amount of overall errors, inclusion of measures with less correlated systematic errors led to greater gain in precision. The empirical GWAS results confirmed that both the three- and six-measure models detected more eGFR-associated genomic loci with stronger statistical association than the single-measure model despite some heterogeneity among the measures. Multiple measures of a quantitative trait can increase the statistical power of a study without additional participant recruitment. However, careful attention must be paid to the correlation of systematic errors and inconsistent associations when different biomarkers or methods are used to measure the quantitative trait.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N70374174d2c848e0944752eec3b08b3b
47 Nb8f24ac524d84730a471f439490b43eb
48 sg:journal.1294984
49 schema:name Using multiple measures for quantitative trait association analyses: application to estimated glomerular filtration rate
50 schema:pagination 461
51 schema:productId N2c1e68357fc842839509cd50d37f7bd6
52 N4bacace311ad44ff8e141af2fc245115
53 N6479deaff50a43819a34e86b25cd4047
54 N9fcf04d794464bf7b6e9479c4760a159
55 Nbc162975a0134d0a8e527eaf1148dc35
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033841951
57 https://doi.org/10.1038/jhg.2013.23
58 schema:sdDatePublished 2019-04-10T19:46
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N442b37c9834e4743ab37fa79ee3435df
61 schema:url https://www.nature.com/articles/jhg201323
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0575d2b9eb304e99a52f829cd6b86732 rdf:first sg:person.01104262534.26
66 rdf:rest N2c6696ae00c24314b763099f04411eaf
67 N0fcbbc8e786147d28da430a80fec3fe5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Middle Aged
69 rdf:type schema:DefinedTerm
70 N21251becccde4c2694d68403609509f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Prospective Studies
72 rdf:type schema:DefinedTerm
73 N2c1e68357fc842839509cd50d37f7bd6 schema:name readcube_id
74 schema:value a13687a32697843c4ea82068ef801e74b05a7c2b9aaa8150a445e94c31f0b164
75 rdf:type schema:PropertyValue
76 N2c6696ae00c24314b763099f04411eaf rdf:first sg:person.01145454311.94
77 rdf:rest Nad235323adfe43399c43a8c748d1e419
78 N2f2c7cb40c9949ddadaa4886ce2922e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Quantitative Trait Loci
80 rdf:type schema:DefinedTerm
81 N3d274eacd93d428b85268cfddd2ea678 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Glomerular Filtration Rate
83 rdf:type schema:DefinedTerm
84 N442b37c9834e4743ab37fa79ee3435df schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N4bacace311ad44ff8e141af2fc245115 schema:name doi
87 schema:value 10.1038/jhg.2013.23
88 rdf:type schema:PropertyValue
89 N4d6322a650d14143a88c21e9ee629ad9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Genetic Association Studies
91 rdf:type schema:DefinedTerm
92 N6479deaff50a43819a34e86b25cd4047 schema:name dimensions_id
93 schema:value pub.1033841951
94 rdf:type schema:PropertyValue
95 N7001460a50a841d9b432cf3b215ea5c2 rdf:first sg:person.0644633633.92
96 rdf:rest N0575d2b9eb304e99a52f829cd6b86732
97 N7018d7e87d39422fac1089b7e6f52761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name European Continental Ancestry Group
99 rdf:type schema:DefinedTerm
100 N70374174d2c848e0944752eec3b08b3b schema:volumeNumber 58
101 rdf:type schema:PublicationVolume
102 N77a009e2d5904c28b15fa5621b0bf3a3 rdf:first sg:person.012700421217.04
103 rdf:rest Nc507171ceeb0489ebc8f54fb18a65cb4
104 N93ca442eb82f4ffcb7b669d14da1722f rdf:first sg:person.01027632421.21
105 rdf:rest N77a009e2d5904c28b15fa5621b0bf3a3
106 N9fcf04d794464bf7b6e9479c4760a159 schema:name pubmed_id
107 schema:value 23535967
108 rdf:type schema:PropertyValue
109 Na44aee820a524fdcad1562a71af2bcf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Biomarkers
111 rdf:type schema:DefinedTerm
112 Nad235323adfe43399c43a8c748d1e419 rdf:first sg:person.01065203525.67
113 rdf:rest N93ca442eb82f4ffcb7b669d14da1722f
114 Naed05ce0470f43adac18dd78b5b6f67d rdf:first sg:person.01141403460.39
115 rdf:rest N7001460a50a841d9b432cf3b215ea5c2
116 Nb2dfc061d6de4731b8008b3effed0f51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 Nb8f24ac524d84730a471f439490b43eb schema:issueNumber 7
120 rdf:type schema:PublicationIssue
121 Nbc162975a0134d0a8e527eaf1148dc35 schema:name nlm_unique_id
122 schema:value 9808008
123 rdf:type schema:PropertyValue
124 Nc507171ceeb0489ebc8f54fb18a65cb4 rdf:first sg:person.010012617237.52
125 rdf:rest rdf:nil
126 Nd4af120069a44bdc8a1debde1ac4dcc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Kidney
128 rdf:type schema:DefinedTerm
129 Nde99ff77a7534f1b860868d8881652b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Polymorphism, Single Nucleotide
131 rdf:type schema:DefinedTerm
132 Nf0c1903bafd24aff87b5c051cfbf1f18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Phenotype
134 rdf:type schema:DefinedTerm
135 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
136 schema:name Mathematical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
139 schema:name Statistics
140 rdf:type schema:DefinedTerm
141 sg:grant.2345491 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
142 rdf:type schema:MonetaryGrant
143 sg:grant.2345497 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
144 rdf:type schema:MonetaryGrant
145 sg:grant.2345504 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
146 rdf:type schema:MonetaryGrant
147 sg:grant.2345510 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
148 rdf:type schema:MonetaryGrant
149 sg:grant.2345516 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
150 rdf:type schema:MonetaryGrant
151 sg:grant.2345522 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
152 rdf:type schema:MonetaryGrant
153 sg:grant.2345526 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
154 rdf:type schema:MonetaryGrant
155 sg:grant.2345564 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
156 rdf:type schema:MonetaryGrant
157 sg:grant.2536122 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
158 rdf:type schema:MonetaryGrant
159 sg:grant.2541272 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
160 rdf:type schema:MonetaryGrant
161 sg:grant.2541398 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
162 rdf:type schema:MonetaryGrant
163 sg:grant.2684550 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
164 rdf:type schema:MonetaryGrant
165 sg:grant.2691245 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
166 rdf:type schema:MonetaryGrant
167 sg:grant.2705143 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2013.23
168 rdf:type schema:MonetaryGrant
169 sg:journal.1294984 schema:issn 1434-5161
170 1435-232X
171 schema:name Journal of Human Genetics
172 rdf:type schema:Periodical
173 sg:person.010012617237.52 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
174 schema:familyName Kao
175 schema:givenName Wen Hong Linda
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010012617237.52
177 rdf:type schema:Person
178 sg:person.01027632421.21 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
179 schema:familyName Astor
180 schema:givenName Brad C
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027632421.21
182 rdf:type schema:Person
183 sg:person.01065203525.67 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
184 schema:familyName Franceschini
185 schema:givenName Nora
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065203525.67
187 rdf:type schema:Person
188 sg:person.01104262534.26 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
189 schema:familyName Boerwinkle
190 schema:givenName Eric
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104262534.26
192 rdf:type schema:Person
193 sg:person.01141403460.39 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
194 schema:familyName Tin
195 schema:givenName Adrienne
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141403460.39
197 rdf:type schema:Person
198 sg:person.01145454311.94 schema:affiliation https://www.grid.ac/institutes/grid.7708.8
199 schema:familyName Kottgen
200 schema:givenName Anna
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145454311.94
202 rdf:type schema:Person
203 sg:person.012700421217.04 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
204 schema:familyName Coresh
205 schema:givenName Josef
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700421217.04
207 rdf:type schema:Person
208 sg:person.0644633633.92 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
209 schema:familyName Colantuoni
210 schema:givenName Elizabeth
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644633633.92
212 rdf:type schema:Person
213 sg:pub.10.1038/ki.1990.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025557543
214 https://doi.org/10.1038/ki.1990.182
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/ki.2009.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040638758
217 https://doi.org/10.1038/ki.2009.262
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nature09792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018122872
220 https://doi.org/10.1038/nature09792
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/ng.555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006886726
223 https://doi.org/10.1038/ng.555
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/ng.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052526981
226 https://doi.org/10.1038/ng.568
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/ng.610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025253932
229 https://doi.org/10.1038/ng.610
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/1471-2105-11-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018022915
232 https://doi.org/10.1186/1471-2105-11-134
233 rdf:type schema:CreativeWork
234 https://app.dimensions.ai/details/publication/pub.1075017372 schema:CreativeWork
235 https://doi.org/10.1002/0470013192.bsa492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019590210
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1002/gepi.20525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049041078
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1002/sim.4780110508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046756479
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1006/tpbi.2001.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027740393
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s0065-2660(07)00404-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009752328
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/s0272-6386(02)70081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027844151
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1038/oby.2011.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008589096
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1053/j.ajkd.2007.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051956308
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1053/j.ajkd.2010.02.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035811617
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1053/j.ajkd.2011.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053080725
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1056/nejmp0808934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034119584
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1073/pnas.0230424100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004325693
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1081/jdi-100104725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009800402
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/bioinformatics/btn563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019111792
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/oxfordjournals.aje.a115184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059958072
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1373/clinchem.2005.0525144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011772959
266 rdf:type schema:CreativeWork
267 https://doi.org/10.2307/2533554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978950
268 rdf:type schema:CreativeWork
269 https://www.grid.ac/institutes/grid.10698.36 schema:alternateName University of North Carolina at Chapel Hill
270 schema:name Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
271 rdf:type schema:Organization
272 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
273 schema:name School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
274 rdf:type schema:Organization
275 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
276 schema:name Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.267308.8 schema:alternateName The University of Texas Health Science Center at Houston
279 schema:name Human Genetics Center, University of Texas School of Public Health, Houston, TX, USA
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.7708.8 schema:alternateName University Medical Center Freiburg
282 schema:name Department of Internal Medicine, Renal Division, University Medical Center Freiburg, Freiburg, Germany
283 Renal Division, Freiburg University Hospital, Freiburg, Germany
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...