Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-11

AUTHORS

Guoqin Wang, Masafumi Watanabe, Yasushi Imai, Kazuo Hara, Ichiro Manabe, Koji Maemura, Momoko Horikoshi, Atsuko Ozeki, Chikako Itoh, Takao Sugiyama, Takashi Kadowaki, Tsutomu Yamazaki, Ryozo Nagai

ABSTRACT

Modulator recognition factor-2 (Mrf2/AT-rich interaction domain (Arid)5b) has been revealed to be involved in pathogenesis of atherosclerosis and adipogenesis. Single-nucleotide polymorphisms (SNPs) in the MRF2/ARID5B gene are associated with coronary artery disease (CAD) and has been proposed as a candidate gene for type 2 diabetes (T2D). The study was aimed to determine whether any of the four MRF2/ARID5B SNPs (rs2893880, rs10740055, rs7087507 and rs10761600) associated with susceptibility to CAD are also associated with T2D, and to determine whether SNP genotype influences the levels of adiponectin and other clinical factors. Association of MRF2/ARID5B SNPs was investigated in 500 diabetic patients from the Department of Metabolic Diseases at the University of Tokyo and 243 hospital-based nondiabetic individuals from the Institute for Adult Disease Asahi Life Foundation Hospital and 500 community-based nondiabetic individuals from the Hiroshima Atomic Bomb Casualty Council Health Management Center. Associations of haplotypes of these SNP with levels of adiponectin and other clinical factors were evaluated when the data was available. We found rs2893880C, rs10740055A, rs7087507A and rs10761600T were increasingly associated with T2D in terms of allele/genotype frequencies of each SNP and their haplotype combinations. Individuals with haplotype CAAT indicated an 1.86 times higher prevalence of diabetes compared with individuals with GCGA (OR 1.86 (95% confidence interval (CI) 1.43-2.41)). Furthermore, CAAT significantly associated with adiponectin levels and other clinical factors. In conclusion, polymorphisms on the MRF2/ARID5B gene were associated with susceptibility to T2D as well as adiponectin and other clinical factors, which was in a completely concordant way with their associations with CAD. More... »

PAGES

727

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/jhg.2012.101

DOI

http://dx.doi.org/10.1038/jhg.2012.101

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049286948

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22971728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adiponectin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan", 
            "Kitasato Clinical Research Center, School of Medicine, Kitasato University, Sagamihara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Guoqin", 
        "id": "sg:person.01174041541.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174041541.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Masafumi", 
        "id": "sg:person.0704502634.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704502634.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imai", 
        "givenName": "Yasushi", 
        "id": "sg:person.012503520402.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012503520402.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Diabetes and Metabolism, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Kazuo", 
        "id": "sg:person.0702440035.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702440035.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manabe", 
        "givenName": "Ichiro", 
        "id": "sg:person.0577123423.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577123423.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maemura", 
        "givenName": "Koji", 
        "id": "sg:person.01314320222.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314320222.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Diabetes and Metabolism, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horikoshi", 
        "givenName": "Momoko", 
        "id": "sg:person.01012423247.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012423247.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozeki", 
        "givenName": "Atsuko", 
        "id": "sg:person.01117262711.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117262711.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hiroshima Atomic Bomb Casualty Council Health Management Center, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Itoh", 
        "givenName": "Chikako", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Adult Diseases Asahi Life Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418597.6", 
          "name": [
            "Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugiyama", 
        "givenName": "Takao", 
        "id": "sg:person.014557706062.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014557706062.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Diabetes and Metabolism, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadowaki", 
        "givenName": "Takashi", 
        "id": "sg:person.01353472360.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Clinical Epidemiology and Systems, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazaki", 
        "givenName": "Tsutomu", 
        "id": "sg:person.01270006264.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270006264.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagai", 
        "givenName": "Ryozo", 
        "id": "sg:person.0772176333.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0925-4773(01)00370-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001462284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2009.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002115593", 
          "https://doi.org/10.1038/leu.2009.277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.51.2.536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002204242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.1999.0643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004555661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2009-09-241513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011300707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.52.7.1655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db07-0451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015875620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.leukres.2010.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016705770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2009.11.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018370258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2007.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019201226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.10099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023884574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024810258", 
          "https://doi.org/10.1038/ng.432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024810258", 
          "https://doi.org/10.1038/ng.432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027902786", 
          "https://doi.org/10.1007/bf00280883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027902786", 
          "https://doi.org/10.1007/bf00280883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027902786", 
          "https://doi.org/10.1007/bf00280883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029456603", 
          "https://doi.org/10.1038/nm1557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.0000033593.05545.7b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031100814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3324/haematol.2010.022459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033369885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20091045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033794686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20091045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033794686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20091045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033794686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)61032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036629514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.168801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037057625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.11.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042305893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jim.2008.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043807313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/24.9.1695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044093374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.55.04.06.db05-0727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046021795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046974364", 
          "https://doi.org/10.1038/ng.430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046974364", 
          "https://doi.org/10.1038/ng.430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049682259", 
          "https://doi.org/10.1038/ng.2231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049958874", 
          "https://doi.org/10.1038/ng.660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050430307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2040-1124.2012.00207.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050752266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1536/ihj.49.313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053513006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/er.2005-0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064285833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2004-0211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064287696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2008-1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064290830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/me.2007-0271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064328004"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-11", 
    "datePublishedReg": "2012-11-01", 
    "description": "Modulator recognition factor-2 (Mrf2/AT-rich interaction domain (Arid)5b) has been revealed to be involved in pathogenesis of atherosclerosis and adipogenesis. Single-nucleotide polymorphisms (SNPs) in the MRF2/ARID5B gene are associated with coronary artery disease (CAD) and has been proposed as a candidate gene for type 2 diabetes (T2D). The study was aimed to determine whether any of the four MRF2/ARID5B SNPs (rs2893880, rs10740055, rs7087507 and rs10761600) associated with susceptibility to CAD are also associated with T2D, and to determine whether SNP genotype influences the levels of adiponectin and other clinical factors. Association of MRF2/ARID5B SNPs was investigated in 500 diabetic patients from the Department of Metabolic Diseases at the University of Tokyo and 243 hospital-based nondiabetic individuals from the Institute for Adult Disease Asahi Life Foundation Hospital and 500 community-based nondiabetic individuals from the Hiroshima Atomic Bomb Casualty Council Health Management Center. Associations of haplotypes of these SNP with levels of adiponectin and other clinical factors were evaluated when the data was available. We found rs2893880C, rs10740055A, rs7087507A and rs10761600T were increasingly associated with T2D in terms of allele/genotype frequencies of each SNP and their haplotype combinations. Individuals with haplotype CAAT indicated an 1.86 times higher prevalence of diabetes compared with individuals with GCGA (OR 1.86 (95% confidence interval (CI) 1.43-2.41)). Furthermore, CAAT significantly associated with adiponectin levels and other clinical factors. In conclusion, polymorphisms on the MRF2/ARID5B gene were associated with susceptibility to T2D as well as adiponectin and other clinical factors, which was in a completely concordant way with their associations with CAD.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/jhg.2012.101", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6078132", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6034334", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294984", 
        "issn": [
          "1434-5161", 
          "1435-232X"
        ], 
        "name": "Journal of Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population", 
    "pagination": "727", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eacb52fcf3a8a14ee8bcb783cfd1af56d12daf5efb4f9c8cd9495235fd6d271a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22971728"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9808008"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/jhg.2012.101"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049286948"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/jhg.2012.101", 
      "https://app.dimensions.ai/details/publication/pub.1049286948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000437.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/jhg2012101"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/jhg.2012.101'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/jhg.2012.101'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/jhg.2012.101'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/jhg.2012.101'


 

This table displays all metadata directly associated to this object as RDF triples.

344 TRIPLES      21 PREDICATES      80 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/jhg.2012.101 schema:about N07eabf6ee11948ae933a58a250787594
2 N0d9eb989a77146ed8bea6f8dc0966993
3 N176c7e2f279d45b4b11c1117a8e7a84c
4 N2533ac8ad8ed4387a070e7fb7af0792c
5 N28a7a4a70859462cb68f53b94a464cb2
6 N4086d96ec94548ea89eed1096da9d5b3
7 N5538ce8a211d408b9fd9f558a0b6d9f9
8 N5f78bc71881e4a79aa25537fa34733e4
9 N641790e07ad441feb13bc7c074973885
10 N705d65e875074d14a722ec9d2ac7d41c
11 N722cb4e4b32e45159e757eddf4dcd5d2
12 Nb3a4a1229fd445b6b2a0046c4856e793
13 Nc1f7f0a14010418684aeaca94d18259e
14 Ncaf2d8d9731a4cc4822ff958921c862e
15 Ne7c69718f0894b698c24c766546a62c5
16 Nf806582759f14f248ff255998fde11e8
17 Nf85c799e5de74cfda28603fe34a56969
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N796c192276964668859c1bf2d33cac03
21 schema:citation sg:pub.10.1007/bf00280883
22 sg:pub.10.1038/leu.2009.277
23 sg:pub.10.1038/ng.2231
24 sg:pub.10.1038/ng.430
25 sg:pub.10.1038/ng.432
26 sg:pub.10.1038/ng.660
27 sg:pub.10.1038/nm1557
28 https://doi.org/10.1002/humu.10099
29 https://doi.org/10.1006/bbrc.1999.0643
30 https://doi.org/10.1016/j.bbrc.2003.11.026
31 https://doi.org/10.1016/j.bbrc.2007.12.002
32 https://doi.org/10.1016/j.bbrc.2009.11.049
33 https://doi.org/10.1016/j.jim.2008.01.013
34 https://doi.org/10.1016/j.leukres.2010.02.001
35 https://doi.org/10.1016/s0140-6736(05)61032-x
36 https://doi.org/10.1016/s0925-4773(01)00370-7
37 https://doi.org/10.1042/bj20091045
38 https://doi.org/10.1093/bioinformatics/btl580
39 https://doi.org/10.1093/nar/24.9.1695
40 https://doi.org/10.1101/gr.168801
41 https://doi.org/10.1111/j.2040-1124.2012.00207.x
42 https://doi.org/10.1126/science.1069424
43 https://doi.org/10.1161/01.res.0000033593.05545.7b
44 https://doi.org/10.1182/blood-2009-09-241513
45 https://doi.org/10.1210/er.2005-0005
46 https://doi.org/10.1210/jc.2004-0211
47 https://doi.org/10.1210/jc.2008-1345
48 https://doi.org/10.1210/me.2007-0271
49 https://doi.org/10.1536/ihj.49.313
50 https://doi.org/10.2337/db07-0451
51 https://doi.org/10.2337/diabetes.51.2.536
52 https://doi.org/10.2337/diabetes.52.7.1655
53 https://doi.org/10.2337/diabetes.55.04.06.db05-0727
54 https://doi.org/10.3324/haematol.2010.022459
55 schema:datePublished 2012-11
56 schema:datePublishedReg 2012-11-01
57 schema:description Modulator recognition factor-2 (Mrf2/AT-rich interaction domain (Arid)5b) has been revealed to be involved in pathogenesis of atherosclerosis and adipogenesis. Single-nucleotide polymorphisms (SNPs) in the MRF2/ARID5B gene are associated with coronary artery disease (CAD) and has been proposed as a candidate gene for type 2 diabetes (T2D). The study was aimed to determine whether any of the four MRF2/ARID5B SNPs (rs2893880, rs10740055, rs7087507 and rs10761600) associated with susceptibility to CAD are also associated with T2D, and to determine whether SNP genotype influences the levels of adiponectin and other clinical factors. Association of MRF2/ARID5B SNPs was investigated in 500 diabetic patients from the Department of Metabolic Diseases at the University of Tokyo and 243 hospital-based nondiabetic individuals from the Institute for Adult Disease Asahi Life Foundation Hospital and 500 community-based nondiabetic individuals from the Hiroshima Atomic Bomb Casualty Council Health Management Center. Associations of haplotypes of these SNP with levels of adiponectin and other clinical factors were evaluated when the data was available. We found rs2893880C, rs10740055A, rs7087507A and rs10761600T were increasingly associated with T2D in terms of allele/genotype frequencies of each SNP and their haplotype combinations. Individuals with haplotype CAAT indicated an 1.86 times higher prevalence of diabetes compared with individuals with GCGA (OR 1.86 (95% confidence interval (CI) 1.43-2.41)). Furthermore, CAAT significantly associated with adiponectin levels and other clinical factors. In conclusion, polymorphisms on the MRF2/ARID5B gene were associated with susceptibility to T2D as well as adiponectin and other clinical factors, which was in a completely concordant way with their associations with CAD.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf Nc027f663875b4740afc83ff84e0c0649
62 Nca0f1ccf6bd847ec937c2f85d59ec4ec
63 sg:journal.1294984
64 schema:name Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population
65 schema:pagination 727
66 schema:productId N06fd26401a9f45399e557c62e630df62
67 N5a32f15dbb1f4ae4a6c5ad2a22fb9dd0
68 Na8ba616d73534878b5f92749426585f5
69 Ne7d84a822bdc4f508b0065b69f913441
70 Nef883d88e87448bbbd372ff3eca1d71d
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049286948
72 https://doi.org/10.1038/jhg.2012.101
73 schema:sdDatePublished 2019-04-11T01:48
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N636839b09f1c4aadb3725c6d1ad1141b
76 schema:url https://www.nature.com/articles/jhg2012101
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N04332b59a5c544b38aed79f3c6169dfb rdf:first sg:person.0577123423.24
81 rdf:rest Ne8268300709946ae8081b170362d27e8
82 N06fd26401a9f45399e557c62e630df62 schema:name pubmed_id
83 schema:value 22971728
84 rdf:type schema:PropertyValue
85 N07eabf6ee11948ae933a58a250787594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Female
87 rdf:type schema:DefinedTerm
88 N0ab12ed0c5834532878b3b01badf8098 rdf:first sg:person.01270006264.53
89 rdf:rest N126800971b4a45a5bc5ec358b915da6f
90 N0d9eb989a77146ed8bea6f8dc0966993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Genetic Predisposition to Disease
92 rdf:type schema:DefinedTerm
93 N126800971b4a45a5bc5ec358b915da6f rdf:first sg:person.0772176333.38
94 rdf:rest rdf:nil
95 N176c7e2f279d45b4b11c1117a8e7a84c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Linkage Disequilibrium
97 rdf:type schema:DefinedTerm
98 N1d5e7064b8c54ce0b18999561d1ece07 rdf:first sg:person.0702440035.88
99 rdf:rest N04332b59a5c544b38aed79f3c6169dfb
100 N1f8f4922274640248bd0ae4f659000a9 rdf:first sg:person.01012423247.48
101 rdf:rest N385f30ca98b44e10ade45aa164acfea9
102 N2533ac8ad8ed4387a070e7fb7af0792c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N28a7a4a70859462cb68f53b94a464cb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Middle Aged
107 rdf:type schema:DefinedTerm
108 N385f30ca98b44e10ade45aa164acfea9 rdf:first sg:person.01117262711.70
109 rdf:rest N5a7de9002dd74282aa374033b323e0a9
110 N4086d96ec94548ea89eed1096da9d5b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Haplotypes
112 rdf:type schema:DefinedTerm
113 N47a40a4681c74f2188ed31a1fcae2b92 rdf:first sg:person.01353472360.41
114 rdf:rest N0ab12ed0c5834532878b3b01badf8098
115 N4d4952a60dc743548465bae0aef7bac6 rdf:first sg:person.0704502634.67
116 rdf:rest N57145fe7fa5142409ee272800e078ab0
117 N5538ce8a211d408b9fd9f558a0b6d9f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Male
119 rdf:type schema:DefinedTerm
120 N57145fe7fa5142409ee272800e078ab0 rdf:first sg:person.012503520402.17
121 rdf:rest N1d5e7064b8c54ce0b18999561d1ece07
122 N5a32f15dbb1f4ae4a6c5ad2a22fb9dd0 schema:name doi
123 schema:value 10.1038/jhg.2012.101
124 rdf:type schema:PropertyValue
125 N5a7de9002dd74282aa374033b323e0a9 rdf:first N86566b8ef61f47ba87fee6e764fe8545
126 rdf:rest N9d1721a1064a40ae841c9e8e8af741f4
127 N5f78bc71881e4a79aa25537fa34733e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Coronary Artery Disease
129 rdf:type schema:DefinedTerm
130 N636839b09f1c4aadb3725c6d1ad1141b schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N641790e07ad441feb13bc7c074973885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Polymorphism, Single Nucleotide
134 rdf:type schema:DefinedTerm
135 N705d65e875074d14a722ec9d2ac7d41c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Asian Continental Ancestry Group
137 rdf:type schema:DefinedTerm
138 N722cb4e4b32e45159e757eddf4dcd5d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name DNA-Binding Proteins
140 rdf:type schema:DefinedTerm
141 N796c192276964668859c1bf2d33cac03 rdf:first sg:person.01174041541.88
142 rdf:rest N4d4952a60dc743548465bae0aef7bac6
143 N86566b8ef61f47ba87fee6e764fe8545 schema:affiliation Ne403c15af018422bb49bee5d18bcc5fc
144 schema:familyName Itoh
145 schema:givenName Chikako
146 rdf:type schema:Person
147 N9d1721a1064a40ae841c9e8e8af741f4 rdf:first sg:person.014557706062.69
148 rdf:rest N47a40a4681c74f2188ed31a1fcae2b92
149 Na8ba616d73534878b5f92749426585f5 schema:name readcube_id
150 schema:value eacb52fcf3a8a14ee8bcb783cfd1af56d12daf5efb4f9c8cd9495235fd6d271a
151 rdf:type schema:PropertyValue
152 Nb3a4a1229fd445b6b2a0046c4856e793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Case-Control Studies
154 rdf:type schema:DefinedTerm
155 Nc027f663875b4740afc83ff84e0c0649 schema:volumeNumber 57
156 rdf:type schema:PublicationVolume
157 Nc1f7f0a14010418684aeaca94d18259e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Transcription Factors
159 rdf:type schema:DefinedTerm
160 Nca0f1ccf6bd847ec937c2f85d59ec4ec schema:issueNumber 11
161 rdf:type schema:PublicationIssue
162 Ncaf2d8d9731a4cc4822ff958921c862e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Diabetes Mellitus, Type 2
164 rdf:type schema:DefinedTerm
165 Ne403c15af018422bb49bee5d18bcc5fc schema:name Hiroshima Atomic Bomb Casualty Council Health Management Center, Hiroshima, Japan
166 rdf:type schema:Organization
167 Ne7c69718f0894b698c24c766546a62c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Adiponectin
169 rdf:type schema:DefinedTerm
170 Ne7d84a822bdc4f508b0065b69f913441 schema:name nlm_unique_id
171 schema:value 9808008
172 rdf:type schema:PropertyValue
173 Ne8268300709946ae8081b170362d27e8 rdf:first sg:person.01314320222.11
174 rdf:rest N1f8f4922274640248bd0ae4f659000a9
175 Nef883d88e87448bbbd372ff3eca1d71d schema:name dimensions_id
176 schema:value pub.1049286948
177 rdf:type schema:PropertyValue
178 Nf806582759f14f248ff255998fde11e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged
180 rdf:type schema:DefinedTerm
181 Nf85c799e5de74cfda28603fe34a56969 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Gene Frequency
183 rdf:type schema:DefinedTerm
184 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
185 schema:name Medical and Health Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
188 schema:name Clinical Sciences
189 rdf:type schema:DefinedTerm
190 sg:grant.6034334 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2012.101
191 rdf:type schema:MonetaryGrant
192 sg:grant.6078132 http://pending.schema.org/fundedItem sg:pub.10.1038/jhg.2012.101
193 rdf:type schema:MonetaryGrant
194 sg:journal.1294984 schema:issn 1434-5161
195 1435-232X
196 schema:name Journal of Human Genetics
197 rdf:type schema:Periodical
198 sg:person.01012423247.48 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
199 schema:familyName Horikoshi
200 schema:givenName Momoko
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012423247.48
202 rdf:type schema:Person
203 sg:person.01117262711.70 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
204 schema:familyName Ozeki
205 schema:givenName Atsuko
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117262711.70
207 rdf:type schema:Person
208 sg:person.01174041541.88 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
209 schema:familyName Wang
210 schema:givenName Guoqin
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174041541.88
212 rdf:type schema:Person
213 sg:person.012503520402.17 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
214 schema:familyName Imai
215 schema:givenName Yasushi
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012503520402.17
217 rdf:type schema:Person
218 sg:person.01270006264.53 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
219 schema:familyName Yamazaki
220 schema:givenName Tsutomu
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270006264.53
222 rdf:type schema:Person
223 sg:person.01314320222.11 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
224 schema:familyName Maemura
225 schema:givenName Koji
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314320222.11
227 rdf:type schema:Person
228 sg:person.01353472360.41 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
229 schema:familyName Kadowaki
230 schema:givenName Takashi
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353472360.41
232 rdf:type schema:Person
233 sg:person.014557706062.69 schema:affiliation https://www.grid.ac/institutes/grid.418597.6
234 schema:familyName Sugiyama
235 schema:givenName Takao
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014557706062.69
237 rdf:type schema:Person
238 sg:person.0577123423.24 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
239 schema:familyName Manabe
240 schema:givenName Ichiro
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577123423.24
242 rdf:type schema:Person
243 sg:person.0702440035.88 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
244 schema:familyName Hara
245 schema:givenName Kazuo
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702440035.88
247 rdf:type schema:Person
248 sg:person.0704502634.67 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
249 schema:familyName Watanabe
250 schema:givenName Masafumi
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704502634.67
252 rdf:type schema:Person
253 sg:person.0772176333.38 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
254 schema:familyName Nagai
255 schema:givenName Ryozo
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38
257 rdf:type schema:Person
258 sg:pub.10.1007/bf00280883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027902786
259 https://doi.org/10.1007/bf00280883
260 rdf:type schema:CreativeWork
261 sg:pub.10.1038/leu.2009.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002115593
262 https://doi.org/10.1038/leu.2009.277
263 rdf:type schema:CreativeWork
264 sg:pub.10.1038/ng.2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049682259
265 https://doi.org/10.1038/ng.2231
266 rdf:type schema:CreativeWork
267 sg:pub.10.1038/ng.430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046974364
268 https://doi.org/10.1038/ng.430
269 rdf:type schema:CreativeWork
270 sg:pub.10.1038/ng.432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024810258
271 https://doi.org/10.1038/ng.432
272 rdf:type schema:CreativeWork
273 sg:pub.10.1038/ng.660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049958874
274 https://doi.org/10.1038/ng.660
275 rdf:type schema:CreativeWork
276 sg:pub.10.1038/nm1557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029456603
277 https://doi.org/10.1038/nm1557
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1002/humu.10099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023884574
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1006/bbrc.1999.0643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004555661
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1016/j.bbrc.2003.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042305893
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1016/j.bbrc.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019201226
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1016/j.bbrc.2009.11.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018370258
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1016/j.jim.2008.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043807313
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1016/j.leukres.2010.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016705770
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/s0140-6736(05)61032-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036629514
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/s0925-4773(01)00370-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001462284
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1042/bj20091045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033794686
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1093/bioinformatics/btl580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050430307
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1093/nar/24.9.1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044093374
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1101/gr.168801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037057625
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1111/j.2040-1124.2012.00207.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050752266
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1161/01.res.0000033593.05545.7b schema:sameAs https://app.dimensions.ai/details/publication/pub.1031100814
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1182/blood-2009-09-241513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011300707
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1210/er.2005-0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064285833
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1210/jc.2004-0211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064287696
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1210/jc.2008-1345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064290830
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1210/me.2007-0271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064328004
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1536/ihj.49.313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053513006
322 rdf:type schema:CreativeWork
323 https://doi.org/10.2337/db07-0451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015875620
324 rdf:type schema:CreativeWork
325 https://doi.org/10.2337/diabetes.51.2.536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002204242
326 rdf:type schema:CreativeWork
327 https://doi.org/10.2337/diabetes.52.7.1655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109736
328 rdf:type schema:CreativeWork
329 https://doi.org/10.2337/diabetes.55.04.06.db05-0727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046021795
330 rdf:type schema:CreativeWork
331 https://doi.org/10.3324/haematol.2010.022459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033369885
332 rdf:type schema:CreativeWork
333 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
334 schema:name Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
335 Department of Clinical Epidemiology and Systems, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
336 Department of Diabetes and Metabolism, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
337 rdf:type schema:Organization
338 https://www.grid.ac/institutes/grid.410786.c schema:alternateName Kitasato University
339 schema:name Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
340 Kitasato Clinical Research Center, School of Medicine, Kitasato University, Sagamihara, Japan
341 rdf:type schema:Organization
342 https://www.grid.ac/institutes/grid.418597.6 schema:alternateName Institute for Adult Diseases Asahi Life Foundation
343 schema:name Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
344 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...