Relationships of online exhaled, offline exhaled, and ambient nitric oxide in an epidemiologic survey of schoolchildren View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-11

AUTHORS

William S Linn, Kiros T Berhane, Edward B Rappaport, Tracy M Bastain, Edward L Avol, Frank D Gilliland

ABSTRACT

Field measurements of exhaled nitric oxide (FeNO) and ambient nitric oxide (NO) are useful to assess both respiratory health and short-term air pollution exposure. Online real-time measurement maximizes data quality and comparability with clinical studies, but offline delayed measurement may be more practical for large epidemiological studies. To facilitate cross-comparison in larger studies, we measured FeNO and concurrent ambient NO both online and offline in 362 children at 14 schools in 8 Southern California communities. Offline breath samples were collected in bags at 100 ml/s expiratory flow with deadspace discard; online FeNO was measured at 50 ml/s. Scrubbing of ambient NO from inhaled air appeared to be nearly 100% effective online, but 50-75% effective offline. Offline samples were stored at 2-8 degrees C and analyzed 2-26 h later at a central laboratory. Offline and online FeNO showed a nearly (but not completely) linear relationship (R(2)=0.90); unadjusted means (ranges) were 10 (4-94) and 15 (3-181) p.p.b., respectively. Ambient NO concentration range was 0-212 p.p.b. Offline FeNO was positively related to ambient NO (r=0.30, P<0.0001), unlike online FeNO (r=0.09, P=0.08), indicating that ambient NO artifactually influenced offline measurements. Offline FeNO differed between schools (P<0.001); online FeNO did not (P=0.26), suggesting artifacts related to offline bag storage and transport. Artifact effects were small in comparison with between-subject variance of FeNO. An empirical statistical model predicting individual online FeNO from offline FeNO, ambient NO, and lag time before offline analysis gave R(2)=0.94. Analyses of school or age differences yielded similar results from measured or model-predicted online FeNO. CONCLUSIONS: Either online or offline measurement of exhaled NO and concurrent ambient NO can be useful in field epidemiology. Influence of ambient NO on exhaled NO should be examined carefully, particularly for offline measurements. More... »

PAGES

674

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/jes.2008.64

DOI

http://dx.doi.org/10.1038/jes.2008.64

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010320893

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18941479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asthma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breath Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "California", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exhalation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitric Oxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Students", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rancho Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.430375.6", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA", 
            "Los Amigos Research and Education Institute, Downey, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linn", 
        "givenName": "William S", 
        "id": "sg:person.01322247415.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322247415.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berhane", 
        "givenName": "Kiros T", 
        "id": "sg:person.01313303316.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313303316.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaport", 
        "givenName": "Edward B", 
        "id": "sg:person.07636553217.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636553217.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastain", 
        "givenName": "Tracy M", 
        "id": "sg:person.014033342567.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033342567.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avol", 
        "givenName": "Edward L", 
        "id": "sg:person.011455401347.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455401347.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilliland", 
        "givenName": "Frank D", 
        "id": "sg:person.01177054716.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177054716.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/thx.2005.056093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006921343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.2005.056093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006921343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00063198-200401000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008347224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00063198-200401000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008347224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/rccm.2201081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009212920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1081-1206(10)60591-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012240000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.9141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016762501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.00034.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019677853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppul.1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020311007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/09031936.02.00293102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028890159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3200/aeoh.59.8.385-391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032051615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00950.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033724670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.7883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037547335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thorax.56.4.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040391768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thorax.56.4.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040391768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa040610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043985034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.160.6.ats8-99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044158349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppul.10023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044939280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.130.5.1541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047035419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.163.7.2009041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048709805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.159.3.9804143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051401375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1999.86.1.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083374047"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "Field measurements of exhaled nitric oxide (FeNO) and ambient nitric oxide (NO) are useful to assess both respiratory health and short-term air pollution exposure. Online real-time measurement maximizes data quality and comparability with clinical studies, but offline delayed measurement may be more practical for large epidemiological studies. To facilitate cross-comparison in larger studies, we measured FeNO and concurrent ambient NO both online and offline in 362 children at 14 schools in 8 Southern California communities. Offline breath samples were collected in bags at 100 ml/s expiratory flow with deadspace discard; online FeNO was measured at 50 ml/s. Scrubbing of ambient NO from inhaled air appeared to be nearly 100% effective online, but 50-75% effective offline. Offline samples were stored at 2-8 degrees C and analyzed 2-26 h later at a central laboratory. Offline and online FeNO showed a nearly (but not completely) linear relationship (R(2)=0.90); unadjusted means (ranges) were 10 (4-94) and 15 (3-181) p.p.b., respectively. Ambient NO concentration range was 0-212 p.p.b. Offline FeNO was positively related to ambient NO (r=0.30, P<0.0001), unlike online FeNO (r=0.09, P=0.08), indicating that ambient NO artifactually influenced offline measurements. Offline FeNO differed between schools (P<0.001); online FeNO did not (P=0.26), suggesting artifacts related to offline bag storage and transport. Artifact effects were small in comparison with between-subject variance of FeNO. An empirical statistical model predicting individual online FeNO from offline FeNO, ambient NO, and lag time before offline analysis gave R(2)=0.94. Analyses of school or age differences yielded similar results from measured or model-predicted online FeNO.\nCONCLUSIONS: Either online or offline measurement of exhaled NO and concurrent ambient NO can be useful in field epidemiology. Influence of ambient NO on exhaled NO should be examined carefully, particularly for offline measurements.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/jes.2008.64", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4593387", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2436274", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439102", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2539882", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2436253", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036306", 
        "issn": [
          "1559-0631", 
          "1559-064X"
        ], 
        "name": "Journal of Exposure Science & Environmental Epidemiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Relationships of online exhaled, offline exhaled, and ambient nitric oxide in an epidemiologic survey of schoolchildren", 
    "pagination": "674", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "312b80345ef44b24f398519134fffc13401f03b1869023bd9a5abc791dc2c8b5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18941479"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101262796"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/jes.2008.64"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010320893"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/jes.2008.64", 
      "https://app.dimensions.ai/details/publication/pub.1010320893"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/jes200864"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/jes.2008.64'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/jes.2008.64'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/jes.2008.64'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/jes.2008.64'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      60 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/jes.2008.64 schema:about N1db075eb03284faea732b7f4a9229ca7
2 N24366610a6e242e6be7a4b9144c3dcde
3 N3dd64df1e08d4e80bd4bcb43477463eb
4 N4e7956931f6a48f6ab997b3eacfe82e0
5 N52af1bd46dd84743b1f4fbef812f0489
6 N536de63d202342daad5399658384f429
7 N8975aef1414d4840a1a1164367523844
8 N942be36357524327b589ae1e2f44028b
9 N9abef9e7b68f487a897837e03887f9a7
10 Nbb8be89d514341b58429675dc6055e69
11 Ne52b0643f79548358778522e805ed587
12 Nf01c06aff53e4547b779d1328b0acb21
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author N6879cf3c115b40ce95b1f0f83ad5a044
16 schema:citation https://doi.org/10.1002/ppul.10023
17 https://doi.org/10.1002/ppul.1102
18 https://doi.org/10.1016/s1081-1206(10)60591-1
19 https://doi.org/10.1056/nejmoa040610
20 https://doi.org/10.1097/00063198-200401000-00006
21 https://doi.org/10.1136/thorax.56.4.285
22 https://doi.org/10.1136/thx.2005.056093
23 https://doi.org/10.1152/jappl.1999.86.1.159
24 https://doi.org/10.1152/japplphysiol.00950.2003
25 https://doi.org/10.1152/physrev.00034.2003
26 https://doi.org/10.1164/ajrccm.159.3.9804143
27 https://doi.org/10.1164/ajrccm.160.6.ats8-99
28 https://doi.org/10.1164/ajrccm.163.7.2009041
29 https://doi.org/10.1164/rccm.2201081
30 https://doi.org/10.1183/09031936.02.00293102
31 https://doi.org/10.1289/ehp.7883
32 https://doi.org/10.1289/ehp.9141
33 https://doi.org/10.1378/chest.130.5.1541
34 https://doi.org/10.3200/aeoh.59.8.385-391
35 schema:datePublished 2009-11
36 schema:datePublishedReg 2009-11-01
37 schema:description Field measurements of exhaled nitric oxide (FeNO) and ambient nitric oxide (NO) are useful to assess both respiratory health and short-term air pollution exposure. Online real-time measurement maximizes data quality and comparability with clinical studies, but offline delayed measurement may be more practical for large epidemiological studies. To facilitate cross-comparison in larger studies, we measured FeNO and concurrent ambient NO both online and offline in 362 children at 14 schools in 8 Southern California communities. Offline breath samples were collected in bags at 100 ml/s expiratory flow with deadspace discard; online FeNO was measured at 50 ml/s. Scrubbing of ambient NO from inhaled air appeared to be nearly 100% effective online, but 50-75% effective offline. Offline samples were stored at 2-8 degrees C and analyzed 2-26 h later at a central laboratory. Offline and online FeNO showed a nearly (but not completely) linear relationship (R(2)=0.90); unadjusted means (ranges) were 10 (4-94) and 15 (3-181) p.p.b., respectively. Ambient NO concentration range was 0-212 p.p.b. Offline FeNO was positively related to ambient NO (r=0.30, P<0.0001), unlike online FeNO (r=0.09, P=0.08), indicating that ambient NO artifactually influenced offline measurements. Offline FeNO differed between schools (P<0.001); online FeNO did not (P=0.26), suggesting artifacts related to offline bag storage and transport. Artifact effects were small in comparison with between-subject variance of FeNO. An empirical statistical model predicting individual online FeNO from offline FeNO, ambient NO, and lag time before offline analysis gave R(2)=0.94. Analyses of school or age differences yielded similar results from measured or model-predicted online FeNO. CONCLUSIONS: Either online or offline measurement of exhaled NO and concurrent ambient NO can be useful in field epidemiology. Influence of ambient NO on exhaled NO should be examined carefully, particularly for offline measurements.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N14a6ed6134774ae49a294432e2b0d18a
42 N179276fd3709476eb10a74f4c272860b
43 sg:journal.1036306
44 schema:name Relationships of online exhaled, offline exhaled, and ambient nitric oxide in an epidemiologic survey of schoolchildren
45 schema:pagination 674
46 schema:productId N172cfd6e8410446b84722308c9ce4df6
47 N3edb1beae4934e2f8b14f8bf5cb48041
48 N5bebd34544684a44acad14362dd6a218
49 Nb99788f4ebdb4243bb9cb107a877c66b
50 Ndefca04b0d894064b90612e205893257
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010320893
52 https://doi.org/10.1038/jes.2008.64
53 schema:sdDatePublished 2019-04-10T19:45
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N99fca6e902064e28b46d235b4d47d8ba
56 schema:url https://www.nature.com/articles/jes200864
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N12603aa70d8f4c79a352cd99549b3894 rdf:first sg:person.01177054716.02
61 rdf:rest rdf:nil
62 N14a6ed6134774ae49a294432e2b0d18a schema:volumeNumber 19
63 rdf:type schema:PublicationVolume
64 N172cfd6e8410446b84722308c9ce4df6 schema:name pubmed_id
65 schema:value 18941479
66 rdf:type schema:PropertyValue
67 N179276fd3709476eb10a74f4c272860b schema:issueNumber 7
68 rdf:type schema:PublicationIssue
69 N1db075eb03284faea732b7f4a9229ca7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Exhalation
71 rdf:type schema:DefinedTerm
72 N24366610a6e242e6be7a4b9144c3dcde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Nitric Oxide
74 rdf:type schema:DefinedTerm
75 N2804c6d8fc6f4967b7c0a58625ba9a36 rdf:first sg:person.01313303316.01
76 rdf:rest N2be2fabdab974da7932be3ab4a0e87a2
77 N2be2fabdab974da7932be3ab4a0e87a2 rdf:first sg:person.07636553217.12
78 rdf:rest N7c0187c0e1f04108961690aee5be284d
79 N39fcf9ae65b945159e5e832b04bf4043 rdf:first sg:person.011455401347.05
80 rdf:rest N12603aa70d8f4c79a352cd99549b3894
81 N3dd64df1e08d4e80bd4bcb43477463eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Asthma
83 rdf:type schema:DefinedTerm
84 N3edb1beae4934e2f8b14f8bf5cb48041 schema:name readcube_id
85 schema:value 312b80345ef44b24f398519134fffc13401f03b1869023bd9a5abc791dc2c8b5
86 rdf:type schema:PropertyValue
87 N4e7956931f6a48f6ab997b3eacfe82e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Time Factors
89 rdf:type schema:DefinedTerm
90 N52af1bd46dd84743b1f4fbef812f0489 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Air Pollutants
92 rdf:type schema:DefinedTerm
93 N536de63d202342daad5399658384f429 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Breath Tests
95 rdf:type schema:DefinedTerm
96 N5bebd34544684a44acad14362dd6a218 schema:name nlm_unique_id
97 schema:value 101262796
98 rdf:type schema:PropertyValue
99 N6879cf3c115b40ce95b1f0f83ad5a044 rdf:first sg:person.01322247415.70
100 rdf:rest N2804c6d8fc6f4967b7c0a58625ba9a36
101 N7c0187c0e1f04108961690aee5be284d rdf:first sg:person.014033342567.81
102 rdf:rest N39fcf9ae65b945159e5e832b04bf4043
103 N8975aef1414d4840a1a1164367523844 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name California
105 rdf:type schema:DefinedTerm
106 N942be36357524327b589ae1e2f44028b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Humans
108 rdf:type schema:DefinedTerm
109 N99fca6e902064e28b46d235b4d47d8ba schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N9abef9e7b68f487a897837e03887f9a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Students
113 rdf:type schema:DefinedTerm
114 Nb99788f4ebdb4243bb9cb107a877c66b schema:name dimensions_id
115 schema:value pub.1010320893
116 rdf:type schema:PropertyValue
117 Nbb8be89d514341b58429675dc6055e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Data Collection
119 rdf:type schema:DefinedTerm
120 Ndefca04b0d894064b90612e205893257 schema:name doi
121 schema:value 10.1038/jes.2008.64
122 rdf:type schema:PropertyValue
123 Ne52b0643f79548358778522e805ed587 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Child
125 rdf:type schema:DefinedTerm
126 Nf01c06aff53e4547b779d1328b0acb21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Risk Assessment
128 rdf:type schema:DefinedTerm
129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
130 schema:name Medical and Health Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
133 schema:name Public Health and Health Services
134 rdf:type schema:DefinedTerm
135 sg:grant.2436253 http://pending.schema.org/fundedItem sg:pub.10.1038/jes.2008.64
136 rdf:type schema:MonetaryGrant
137 sg:grant.2436274 http://pending.schema.org/fundedItem sg:pub.10.1038/jes.2008.64
138 rdf:type schema:MonetaryGrant
139 sg:grant.2439102 http://pending.schema.org/fundedItem sg:pub.10.1038/jes.2008.64
140 rdf:type schema:MonetaryGrant
141 sg:grant.2539882 http://pending.schema.org/fundedItem sg:pub.10.1038/jes.2008.64
142 rdf:type schema:MonetaryGrant
143 sg:grant.4593387 http://pending.schema.org/fundedItem sg:pub.10.1038/jes.2008.64
144 rdf:type schema:MonetaryGrant
145 sg:journal.1036306 schema:issn 1559-0631
146 1559-064X
147 schema:name Journal of Exposure Science & Environmental Epidemiology
148 rdf:type schema:Periodical
149 sg:person.011455401347.05 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
150 schema:familyName Avol
151 schema:givenName Edward L
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455401347.05
153 rdf:type schema:Person
154 sg:person.01177054716.02 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
155 schema:familyName Gilliland
156 schema:givenName Frank D
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177054716.02
158 rdf:type schema:Person
159 sg:person.01313303316.01 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
160 schema:familyName Berhane
161 schema:givenName Kiros T
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313303316.01
163 rdf:type schema:Person
164 sg:person.01322247415.70 schema:affiliation https://www.grid.ac/institutes/grid.430375.6
165 schema:familyName Linn
166 schema:givenName William S
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322247415.70
168 rdf:type schema:Person
169 sg:person.014033342567.81 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
170 schema:familyName Bastain
171 schema:givenName Tracy M
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033342567.81
173 rdf:type schema:Person
174 sg:person.07636553217.12 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
175 schema:familyName Rappaport
176 schema:givenName Edward B
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636553217.12
178 rdf:type schema:Person
179 https://doi.org/10.1002/ppul.10023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044939280
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/ppul.1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020311007
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s1081-1206(10)60591-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012240000
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1056/nejmoa040610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043985034
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1097/00063198-200401000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008347224
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1136/thorax.56.4.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040391768
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1136/thx.2005.056093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006921343
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1152/jappl.1999.86.1.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083374047
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1152/japplphysiol.00950.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033724670
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1152/physrev.00034.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019677853
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1164/ajrccm.159.3.9804143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051401375
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1164/ajrccm.160.6.ats8-99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044158349
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1164/ajrccm.163.7.2009041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048709805
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1164/rccm.2201081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009212920
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1183/09031936.02.00293102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028890159
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1289/ehp.7883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037547335
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1289/ehp.9141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016762501
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1378/chest.130.5.1541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047035419
214 rdf:type schema:CreativeWork
215 https://doi.org/10.3200/aeoh.59.8.385-391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032051615
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
218 schema:name Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.430375.6 schema:alternateName Rancho Research Institute
221 schema:name Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
222 Los Amigos Research and Education Institute, Downey, California, USA
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...