Correlation detection strategies in microbial data sets vary widely in sensitivity and precision View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-23

AUTHORS

Sophie Weiss, Will Van Treuren, Catherine Lozupone, Karoline Faust, Jonathan Friedman, Ye Deng, Li Charlie Xia, Zhenjiang Zech Xu, Luke Ursell, Eric J Alm, Amanda Birmingham, Jacob A Cram, Jed A Fuhrman, Jeroen Raes, Fengzhu Sun, Jizhong Zhou, Rob Knight

ABSTRACT

Disruption of healthy microbial communities has been linked to numerous diseases, yet microbial interactions are little understood. This is due in part to the large number of bacteria, and the much larger number of interactions (easily in the millions), making experimental investigation very difficult at best and necessitating the nascent field of computational exploration through microbial correlation networks. We benchmark the performance of eight correlation techniques on simulated and real data in response to challenges specific to microbiome studies: fractional sampling of ribosomal RNA sequences, uneven sampling depths, rare microbes and a high proportion of zero counts. Also tested is the ability to distinguish signals from noise, and detect a range of ecological and time-series relationships. Finally, we provide specific recommendations for correlation technique usage. Although some methods perform better than others, there is still considerable need for improvement in current techniques. More... »

PAGES

1669-1681

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ismej.2015.235

DOI

http://dx.doi.org/10.1038/ismej.2015.235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024596109

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26905627


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benchmarking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Sophie", 
        "id": "sg:person.01166324530.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166324530.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Treuren", 
        "givenName": "Will", 
        "id": "sg:person.01123102026.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123102026.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Colorado, Denver, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.241116.1", 
          "name": [
            "Department of Medicine, University of Colorado, Denver, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lozupone", 
        "givenName": "Catherine", 
        "id": "sg:person.0672337357.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Department of Microbiology and Immunology, Rega Institute KU Leuven, Leuven, Belgium", 
            "VIB Center for the Biology of Disease, VIB, Leuven, Belgium", 
            "Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faust", 
        "givenName": "Karoline", 
        "id": "sg:person.01054521721.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054521721.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friedman", 
        "givenName": "Jonathan", 
        "id": "sg:person.0670257026.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670257026.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.266900.b", 
          "name": [
            "CAS Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China", 
            "Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Ye", 
        "id": "sg:person.01136447106.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136447106.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA", 
            "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Li Charlie", 
        "id": "sg:person.01267011446.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267011446.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Departments of Pediatrics, University of California San Diego, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Zhenjiang Zech", 
        "id": "sg:person.01161573701.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161573701.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biota Technology, Inc., Denver, CO, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biota Technology, Inc., Denver, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ursell", 
        "givenName": "Luke", 
        "id": "sg:person.0624766217.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624766217.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alm", 
        "givenName": "Eric J", 
        "id": "sg:person.0622302463.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622302463.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Birmingham", 
        "givenName": "Amanda", 
        "id": "sg:person.01231155371.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cram", 
        "givenName": "Jacob A", 
        "id": "sg:person.0657633746.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657633746.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuhrman", 
        "givenName": "Jed A", 
        "id": "sg:person.0725061453.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725061453.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Department of Microbiology and Immunology, Rega Institute KU Leuven, Leuven, Belgium", 
            "VIB Center for the Biology of Disease, VIB, Leuven, Belgium", 
            "Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raes", 
        "givenName": "Jeroen", 
        "id": "sg:person.0765515705.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765515705.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Fengzhu", 
        "id": "sg:person.0637727227.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637727227.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA", 
            "Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA", 
            "State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jizhong", 
        "id": "sg:person.01171352100.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171352100.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Departments of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
            "Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Rob", 
        "id": "sg:person.016311745377.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ismej.2010.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031320129", 
          "https://doi.org/10.1038/ismej.2010.204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170002", 
          "https://doi.org/10.1038/nature07540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2011.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074967", 
          "https://doi.org/10.1038/ismej.2011.24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004780748", 
          "https://doi.org/10.1038/nature13828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139060", 
          "https://doi.org/10.1038/nmeth.2658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716595", 
          "https://doi.org/10.1007/978-94-009-4109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2011-12-5-r50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050643751", 
          "https://doi.org/10.1186/gb-2011-12-5-r50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2013.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023249054", 
          "https://doi.org/10.1038/ismej.2013.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026204536", 
          "https://doi.org/10.1038/nature09944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043309820", 
          "https://doi.org/10.1038/nature09922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030236624", 
          "https://doi.org/10.1038/nrmicro2832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031289083", 
          "https://doi.org/10.1186/gb-2010-11-10-r106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032970670", 
          "https://doi.org/10.1186/1471-2105-13-113"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-23", 
    "datePublishedReg": "2016-02-23", 
    "description": "Disruption of healthy microbial communities has been linked to numerous diseases, yet microbial interactions are little understood. This is due in part to the large number of bacteria, and the much larger number of interactions (easily in the millions), making experimental investigation very difficult at best and necessitating the nascent field of computational exploration through microbial correlation networks. We benchmark the performance of eight correlation techniques on simulated and real data in response to challenges specific to microbiome studies: fractional sampling of ribosomal RNA sequences, uneven sampling depths, rare microbes and a high proportion of zero counts. Also tested is the ability to distinguish signals from noise, and detect a range of ecological and time-series relationships. Finally, we provide specific recommendations for correlation technique usage. Although some methods perform better than others, there is still considerable need for improvement in current techniques.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ismej.2015.235", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691272", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529347", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3130003", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "microbial correlation networks", 
      "ribosomal RNA sequences", 
      "healthy microbial community", 
      "microbial data sets", 
      "rare microbes", 
      "microbial interactions", 
      "microbial communities", 
      "RNA sequences", 
      "microbiome studies", 
      "numerous diseases", 
      "correlation network", 
      "large number", 
      "microbes", 
      "nascent field", 
      "bacteria", 
      "sequence", 
      "interaction", 
      "higher proportion", 
      "disruption", 
      "computational exploration", 
      "community", 
      "number", 
      "data sets", 
      "response", 
      "ability", 
      "signals", 
      "proportion", 
      "disease", 
      "sampling", 
      "strategies", 
      "part", 
      "current techniques", 
      "relationship", 
      "study", 
      "detection strategy", 
      "time-series relationship", 
      "sensitivity", 
      "real data", 
      "data", 
      "range", 
      "set", 
      "investigation", 
      "network", 
      "count", 
      "depth", 
      "considerable need", 
      "technique usage", 
      "exploration", 
      "challenges", 
      "technique", 
      "field", 
      "usage", 
      "correlation technique", 
      "fractional sampling", 
      "need", 
      "method", 
      "performance", 
      "precision", 
      "noise", 
      "improvement", 
      "recommendations", 
      "specific recommendations", 
      "experimental investigation"
    ], 
    "name": "Correlation detection strategies in microbial data sets vary widely in sensitivity and precision", 
    "pagination": "1669-1681", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024596109"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ismej.2015.235"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26905627"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ismej.2015.235", 
      "https://app.dimensions.ai/details/publication/pub.1024596109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_708.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ismej.2015.235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.235'


 

This table displays all metadata directly associated to this object as RDF triples.

374 TRIPLES      22 PREDICATES      111 URIs      90 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ismej.2015.235 schema:about N0597d3de2bcd4038905f8b70427e795e
2 N27d9ebb68a4346bc8bf226cc9396c309
3 N31498956c05349168e0f2f6b97e3093a
4 N41205ad4458b4fc0b06026635f89ecf6
5 N61e58f2429564f668b683a4db9a19e00
6 N85e84f332b01466cb5dd57edacd768fd
7 N98d902e6408748c2b9624a8083c7cda5
8 Nbc6f78c3ebed4a66b2c3c686469abba0
9 Nf6cbdeb2a4ee41938e89c1e0a987aa5c
10 anzsrc-for:06
11 anzsrc-for:0605
12 schema:author Na640551df2aa4702a40e750e16c16f87
13 schema:citation sg:pub.10.1007/978-94-009-4109-0
14 sg:pub.10.1038/ismej.2010.204
15 sg:pub.10.1038/ismej.2011.24
16 sg:pub.10.1038/ismej.2013.54
17 sg:pub.10.1038/nature07540
18 sg:pub.10.1038/nature09922
19 sg:pub.10.1038/nature09944
20 sg:pub.10.1038/nature13828
21 sg:pub.10.1038/nmeth.2658
22 sg:pub.10.1038/nrmicro2832
23 sg:pub.10.1186/1471-2105-13-113
24 sg:pub.10.1186/gb-2010-11-10-r106
25 sg:pub.10.1186/gb-2011-12-5-r50
26 schema:datePublished 2016-02-23
27 schema:datePublishedReg 2016-02-23
28 schema:description Disruption of healthy microbial communities has been linked to numerous diseases, yet microbial interactions are little understood. This is due in part to the large number of bacteria, and the much larger number of interactions (easily in the millions), making experimental investigation very difficult at best and necessitating the nascent field of computational exploration through microbial correlation networks. We benchmark the performance of eight correlation techniques on simulated and real data in response to challenges specific to microbiome studies: fractional sampling of ribosomal RNA sequences, uneven sampling depths, rare microbes and a high proportion of zero counts. Also tested is the ability to distinguish signals from noise, and detect a range of ecological and time-series relationships. Finally, we provide specific recommendations for correlation technique usage. Although some methods perform better than others, there is still considerable need for improvement in current techniques.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N7a4dee96a8b84d49b97a4f3afa61f93f
33 Nce82879d3b744263bb98f95125e6d3bf
34 sg:journal.1038436
35 schema:keywords RNA sequences
36 ability
37 bacteria
38 challenges
39 community
40 computational exploration
41 considerable need
42 correlation network
43 correlation technique
44 count
45 current techniques
46 data
47 data sets
48 depth
49 detection strategy
50 disease
51 disruption
52 experimental investigation
53 exploration
54 field
55 fractional sampling
56 healthy microbial community
57 higher proportion
58 improvement
59 interaction
60 investigation
61 large number
62 method
63 microbes
64 microbial communities
65 microbial correlation networks
66 microbial data sets
67 microbial interactions
68 microbiome studies
69 nascent field
70 need
71 network
72 noise
73 number
74 numerous diseases
75 part
76 performance
77 precision
78 proportion
79 range
80 rare microbes
81 real data
82 recommendations
83 relationship
84 response
85 ribosomal RNA sequences
86 sampling
87 sensitivity
88 sequence
89 set
90 signals
91 specific recommendations
92 strategies
93 study
94 technique
95 technique usage
96 time-series relationship
97 usage
98 schema:name Correlation detection strategies in microbial data sets vary widely in sensitivity and precision
99 schema:pagination 1669-1681
100 schema:productId N4a958673ecb2429db9595d94e0e305e8
101 N850324bf7ea748419be1d5dd947ff23f
102 N85c97f3c58a64a77a6251643c9919338
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024596109
104 https://doi.org/10.1038/ismej.2015.235
105 schema:sdDatePublished 2022-05-20T07:31
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N94db458aabd74398a8e58b56ca67d76a
108 schema:url https://doi.org/10.1038/ismej.2015.235
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N0597d3de2bcd4038905f8b70427e795e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Microbial Interactions
114 rdf:type schema:DefinedTerm
115 N09a1907ec30e4b649cee01516a6c2705 rdf:first sg:person.01161573701.69
116 rdf:rest N823fc9f638eb44769abb613a12bc7067
117 N21162545d4dd4a189fae279200aabbc1 rdf:first sg:person.01136447106.13
118 rdf:rest N7745cc7573414286b490606f8c86ba29
119 N27d9ebb68a4346bc8bf226cc9396c309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Microbiota
121 rdf:type schema:DefinedTerm
122 N31498956c05349168e0f2f6b97e3093a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Bacteria
124 rdf:type schema:DefinedTerm
125 N35933c08135640ad8b9d76404a4398ab rdf:first sg:person.0765515705.86
126 rdf:rest N3a5df37f29d047f499b580da0b697bd2
127 N3a5df37f29d047f499b580da0b697bd2 rdf:first sg:person.0637727227.25
128 rdf:rest N9039aa7187b44bad8397c2c9d4df4133
129 N41205ad4458b4fc0b06026635f89ecf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Benchmarking
131 rdf:type schema:DefinedTerm
132 N454a185a651445729871a59e68515b16 rdf:first sg:person.016311745377.96
133 rdf:rest rdf:nil
134 N4a958673ecb2429db9595d94e0e305e8 schema:name doi
135 schema:value 10.1038/ismej.2015.235
136 rdf:type schema:PropertyValue
137 N4d90013c530746c58c8edf02d5599988 rdf:first sg:person.01231155371.50
138 rdf:rest N5f757128a6cd464d887dba36e2bf0dfe
139 N5f757128a6cd464d887dba36e2bf0dfe rdf:first sg:person.0657633746.30
140 rdf:rest Nbaf83391c7024f9ebb01b0e8c5f37a41
141 N61e58f2429564f668b683a4db9a19e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Statistics as Topic
143 rdf:type schema:DefinedTerm
144 N7745cc7573414286b490606f8c86ba29 rdf:first sg:person.01267011446.28
145 rdf:rest N09a1907ec30e4b649cee01516a6c2705
146 N7a4dee96a8b84d49b97a4f3afa61f93f schema:volumeNumber 10
147 rdf:type schema:PublicationVolume
148 N823fc9f638eb44769abb613a12bc7067 rdf:first sg:person.0624766217.74
149 rdf:rest N994b30a8e9cb43e5b529b7e923f34c88
150 N850324bf7ea748419be1d5dd947ff23f schema:name pubmed_id
151 schema:value 26905627
152 rdf:type schema:PropertyValue
153 N85c97f3c58a64a77a6251643c9919338 schema:name dimensions_id
154 schema:value pub.1024596109
155 rdf:type schema:PropertyValue
156 N85e84f332b01466cb5dd57edacd768fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Humans
158 rdf:type schema:DefinedTerm
159 N9039aa7187b44bad8397c2c9d4df4133 rdf:first sg:person.01171352100.63
160 rdf:rest N454a185a651445729871a59e68515b16
161 N94db458aabd74398a8e58b56ca67d76a schema:name Springer Nature - SN SciGraph project
162 rdf:type schema:Organization
163 N98d902e6408748c2b9624a8083c7cda5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Computational Biology
165 rdf:type schema:DefinedTerm
166 N994b30a8e9cb43e5b529b7e923f34c88 rdf:first sg:person.0622302463.69
167 rdf:rest N4d90013c530746c58c8edf02d5599988
168 Na640551df2aa4702a40e750e16c16f87 rdf:first sg:person.01166324530.84
169 rdf:rest Ncf6ae15565414660bc169db9fb0f5302
170 Nb608bc87895b4b20897077ce9d279c04 rdf:first sg:person.0670257026.89
171 rdf:rest N21162545d4dd4a189fae279200aabbc1
172 Nbaf83391c7024f9ebb01b0e8c5f37a41 rdf:first sg:person.0725061453.51
173 rdf:rest N35933c08135640ad8b9d76404a4398ab
174 Nbc6f78c3ebed4a66b2c3c686469abba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Models, Statistical
176 rdf:type schema:DefinedTerm
177 Nc6066f262509426ea98bec9cc9dc4e46 rdf:first sg:person.0672337357.81
178 rdf:rest Nd9dc264513ed4643a9509ef0a04a6c70
179 Nce82879d3b744263bb98f95125e6d3bf schema:issueNumber 7
180 rdf:type schema:PublicationIssue
181 Ncf6ae15565414660bc169db9fb0f5302 rdf:first sg:person.01123102026.79
182 rdf:rest Nc6066f262509426ea98bec9cc9dc4e46
183 Nd9dc264513ed4643a9509ef0a04a6c70 rdf:first sg:person.01054521721.78
184 rdf:rest Nb608bc87895b4b20897077ce9d279c04
185 Nf6cbdeb2a4ee41938e89c1e0a987aa5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name RNA, Ribosomal, 16S
187 rdf:type schema:DefinedTerm
188 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
189 schema:name Biological Sciences
190 rdf:type schema:DefinedTerm
191 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
192 schema:name Microbiology
193 rdf:type schema:DefinedTerm
194 sg:grant.2529347 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2015.235
195 rdf:type schema:MonetaryGrant
196 sg:grant.2691272 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2015.235
197 rdf:type schema:MonetaryGrant
198 sg:grant.3130003 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2015.235
199 rdf:type schema:MonetaryGrant
200 sg:journal.1038436 schema:issn 1751-7362
201 1751-7370
202 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01054521721.78 schema:affiliation grid-institutes:grid.8767.e
206 schema:familyName Faust
207 schema:givenName Karoline
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054521721.78
209 rdf:type schema:Person
210 sg:person.01123102026.79 schema:affiliation grid-institutes:grid.266190.a
211 schema:familyName Van Treuren
212 schema:givenName Will
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123102026.79
214 rdf:type schema:Person
215 sg:person.01136447106.13 schema:affiliation grid-institutes:grid.266900.b
216 schema:familyName Deng
217 schema:givenName Ye
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136447106.13
219 rdf:type schema:Person
220 sg:person.01161573701.69 schema:affiliation grid-institutes:grid.266100.3
221 schema:familyName Xu
222 schema:givenName Zhenjiang Zech
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161573701.69
224 rdf:type schema:Person
225 sg:person.01166324530.84 schema:affiliation grid-institutes:grid.266190.a
226 schema:familyName Weiss
227 schema:givenName Sophie
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166324530.84
229 rdf:type schema:Person
230 sg:person.01171352100.63 schema:affiliation grid-institutes:grid.12527.33
231 schema:familyName Zhou
232 schema:givenName Jizhong
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171352100.63
234 rdf:type schema:Person
235 sg:person.01231155371.50 schema:affiliation grid-institutes:grid.266100.3
236 schema:familyName Birmingham
237 schema:givenName Amanda
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50
239 rdf:type schema:Person
240 sg:person.01267011446.28 schema:affiliation grid-institutes:grid.25879.31
241 schema:familyName Xia
242 schema:givenName Li Charlie
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267011446.28
244 rdf:type schema:Person
245 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266100.3
246 schema:familyName Knight
247 schema:givenName Rob
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
249 rdf:type schema:Person
250 sg:person.0622302463.69 schema:affiliation grid-institutes:grid.116068.8
251 schema:familyName Alm
252 schema:givenName Eric J
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622302463.69
254 rdf:type schema:Person
255 sg:person.0624766217.74 schema:affiliation grid-institutes:None
256 schema:familyName Ursell
257 schema:givenName Luke
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624766217.74
259 rdf:type schema:Person
260 sg:person.0637727227.25 schema:affiliation grid-institutes:grid.42505.36
261 schema:familyName Sun
262 schema:givenName Fengzhu
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637727227.25
264 rdf:type schema:Person
265 sg:person.0657633746.30 schema:affiliation grid-institutes:grid.42505.36
266 schema:familyName Cram
267 schema:givenName Jacob A
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657633746.30
269 rdf:type schema:Person
270 sg:person.0670257026.89 schema:affiliation grid-institutes:grid.116068.8
271 schema:familyName Friedman
272 schema:givenName Jonathan
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670257026.89
274 rdf:type schema:Person
275 sg:person.0672337357.81 schema:affiliation grid-institutes:grid.241116.1
276 schema:familyName Lozupone
277 schema:givenName Catherine
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81
279 rdf:type schema:Person
280 sg:person.0725061453.51 schema:affiliation grid-institutes:grid.42505.36
281 schema:familyName Fuhrman
282 schema:givenName Jed A
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725061453.51
284 rdf:type schema:Person
285 sg:person.0765515705.86 schema:affiliation grid-institutes:grid.8767.e
286 schema:familyName Raes
287 schema:givenName Jeroen
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765515705.86
289 rdf:type schema:Person
290 sg:pub.10.1007/978-94-009-4109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716595
291 https://doi.org/10.1007/978-94-009-4109-0
292 rdf:type schema:CreativeWork
293 sg:pub.10.1038/ismej.2010.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031320129
294 https://doi.org/10.1038/ismej.2010.204
295 rdf:type schema:CreativeWork
296 sg:pub.10.1038/ismej.2011.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007074967
297 https://doi.org/10.1038/ismej.2011.24
298 rdf:type schema:CreativeWork
299 sg:pub.10.1038/ismej.2013.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023249054
300 https://doi.org/10.1038/ismej.2013.54
301 rdf:type schema:CreativeWork
302 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
303 https://doi.org/10.1038/nature07540
304 rdf:type schema:CreativeWork
305 sg:pub.10.1038/nature09922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043309820
306 https://doi.org/10.1038/nature09922
307 rdf:type schema:CreativeWork
308 sg:pub.10.1038/nature09944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026204536
309 https://doi.org/10.1038/nature09944
310 rdf:type schema:CreativeWork
311 sg:pub.10.1038/nature13828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004780748
312 https://doi.org/10.1038/nature13828
313 rdf:type schema:CreativeWork
314 sg:pub.10.1038/nmeth.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139060
315 https://doi.org/10.1038/nmeth.2658
316 rdf:type schema:CreativeWork
317 sg:pub.10.1038/nrmicro2832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030236624
318 https://doi.org/10.1038/nrmicro2832
319 rdf:type schema:CreativeWork
320 sg:pub.10.1186/1471-2105-13-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032970670
321 https://doi.org/10.1186/1471-2105-13-113
322 rdf:type schema:CreativeWork
323 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
324 https://doi.org/10.1186/gb-2010-11-10-r106
325 rdf:type schema:CreativeWork
326 sg:pub.10.1186/gb-2011-12-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643751
327 https://doi.org/10.1186/gb-2011-12-5-r50
328 rdf:type schema:CreativeWork
329 grid-institutes:None schema:alternateName Biota Technology, Inc., Denver, CO, USA
330 schema:name Biota Technology, Inc., Denver, CO, USA
331 rdf:type schema:Organization
332 grid-institutes:grid.116068.8 schema:alternateName Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
333 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
334 schema:name Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
335 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
336 rdf:type schema:Organization
337 grid-institutes:grid.12527.33 schema:alternateName State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
338 schema:name Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
339 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
340 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
341 rdf:type schema:Organization
342 grid-institutes:grid.241116.1 schema:alternateName Department of Medicine, University of Colorado, Denver, CO, USA
343 schema:name Department of Medicine, University of Colorado, Denver, CO, USA
344 rdf:type schema:Organization
345 grid-institutes:grid.25879.31 schema:alternateName Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
346 schema:name Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
347 Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
348 rdf:type schema:Organization
349 grid-institutes:grid.266100.3 schema:alternateName Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
350 Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
351 Departments of Pediatrics, University of California San Diego, La Jolla, CA, USA
352 schema:name Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
353 Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
354 Departments of Pediatrics, University of California San Diego, La Jolla, CA, USA
355 rdf:type schema:Organization
356 grid-institutes:grid.266190.a schema:alternateName BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
357 Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
358 schema:name BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
359 Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
360 rdf:type schema:Organization
361 grid-institutes:grid.266900.b schema:alternateName Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
362 schema:name CAS Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China
363 Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
364 rdf:type schema:Organization
365 grid-institutes:grid.42505.36 schema:alternateName Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
366 Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
367 schema:name Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
368 Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
369 rdf:type schema:Organization
370 grid-institutes:grid.8767.e schema:alternateName Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium
371 schema:name Department of Microbiology and Immunology, Rega Institute KU Leuven, Leuven, Belgium
372 Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium
373 VIB Center for the Biology of Disease, VIB, Leuven, Belgium
374 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...