Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11-10

AUTHORS

Ben O Oyserman, Daniel R Noguera, Tijana Glavina del Rio, Susannah G Tringe, Katherine D McMahon

ABSTRACT

Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobic acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified ~35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. This analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms. More... »

PAGES

810-822

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ismej.2015.155

DOI

http://dx.doi.org/10.1038/ismej.2015.155

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027052804

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26555245


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetyl Coenzyme A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Betaproteobacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorus", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oyserman", 
        "givenName": "Ben O", 
        "id": "sg:person.01027422372.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027422372.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noguera", 
        "givenName": "Daniel R", 
        "id": "sg:person.01040656401.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040656401.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "del Rio", 
        "givenName": "Tijana Glavina", 
        "id": "sg:person.01214220734.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214220734.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tringe", 
        "givenName": "Susannah G", 
        "id": "sg:person.01340300137.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340300137.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA", 
            "Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McMahon", 
        "givenName": "Katherine D", 
        "id": "sg:person.01007375500.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.2762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033430428", 
          "https://doi.org/10.1038/nmeth.2762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00871641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044272643", 
          "https://doi.org/10.1007/bf00871641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009864240", 
          "https://doi.org/10.1038/nbt1247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2013.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024199291", 
          "https://doi.org/10.1038/ismej.2013.117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-11-262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043371157", 
          "https://doi.org/10.1186/1471-2180-11-262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014883658", 
          "https://doi.org/10.1038/ismej.2010.127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2008.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021439156", 
          "https://doi.org/10.1038/ismej.2008.38"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11-10", 
    "datePublishedReg": "2015-11-10", 
    "description": "Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobic acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified ~35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. This analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ismej.2015.155", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3111662", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "Candidatus Accumulibacter phosphatis", 
      "Accumulibacter phosphatis", 
      "putative regulatory motifs", 
      "co-expressed gene clusters", 
      "comparative genomic analysis", 
      "co-expressed genes", 
      "base pairs upstream", 
      "membrane-bound hydrogenases", 
      "acetyl-CoA formation", 
      "uncultured organisms", 
      "genomic blueprint", 
      "transcriptional regulation", 
      "palindromic motif", 
      "sigma factor", 
      "gene cluster", 
      "regulatory motifs", 
      "Metatranscriptomic insights", 
      "regulatory networks", 
      "genomic analysis", 
      "second motif", 
      "regulatory mechanisms", 
      "gene expression", 
      "redox balance", 
      "genes", 
      "diverse array", 
      "biological phosphorus removal", 
      "aerobic metabolism", 
      "glycine utilization", 
      "enrichment cultures", 
      "PHA synthesis", 
      "unknown strategy", 
      "motif", 
      "regulatory control", 
      "carbon source", 
      "Accumulibacter", 
      "acetate activation", 
      "cycle phase", 
      "metabolism", 
      "metatranscriptomes", 
      "modulon", 
      "energy production", 
      "transcripts", 
      "organisms", 
      "hydrogenases", 
      "PhaR", 
      "abundance", 
      "sites", 
      "upstream", 
      "regulation", 
      "pathway", 
      "insights", 
      "phosphorus removal", 
      "sequence", 
      "expression", 
      "production", 
      "upregulation", 
      "previous studies", 
      "activation", 
      "further investigation", 
      "mechanism", 
      "phosphorus", 
      "electron flux", 
      "clusters", 
      "culture", 
      "cycle", 
      "analysis", 
      "formation", 
      "blueprint", 
      "contact", 
      "synthesis", 
      "importance", 
      "basis", 
      "factors", 
      "balance", 
      "array", 
      "conversion", 
      "strategies", 
      "control", 
      "source", 
      "study", 
      "flux", 
      "hydrogen production", 
      "removal", 
      "utilization", 
      "investigation", 
      "network", 
      "route", 
      "reconstruction", 
      "phase", 
      "trends", 
      "relevant trends", 
      "framework", 
      "energy"
    ], 
    "name": "Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis", 
    "pagination": "810-822", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027052804"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ismej.2015.155"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26555245"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ismej.2015.155", 
      "https://app.dimensions.ai/details/publication/pub.1027052804"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_664.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ismej.2015.155"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.155'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.155'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.155'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2015.155'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      22 PREDICATES      139 URIs      121 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ismej.2015.155 schema:about N1a1fc094f57b417f92e7902c216d5977
2 N2e90c82bf625430e91dec6aeb7bc17f3
3 N2fdd571b2f2d4c3aa29d2afafb57bfa0
4 N3d60c7914ba94da5bea4a1714950b647
5 N7e94f9a279354bf0b3f125d0c2fcfa66
6 N7f6e145b5bcc4efab251d67dbc0e128d
7 N800209ac6b05481aa3921f141aa62b06
8 N95b7c17b3f87478e8aeea9baa6aa7504
9 Naf93405a736041479d35fe555e88efc3
10 Nc0d8ec8a4d7249df929e47546d7735e5
11 anzsrc-for:06
12 anzsrc-for:0601
13 anzsrc-for:0604
14 schema:author N5e91e3ca08b64691993a15dc8cdd9173
15 schema:citation sg:pub.10.1007/bf00871641
16 sg:pub.10.1038/ismej.2008.38
17 sg:pub.10.1038/ismej.2010.127
18 sg:pub.10.1038/ismej.2013.117
19 sg:pub.10.1038/nature01644
20 sg:pub.10.1038/nbt1247
21 sg:pub.10.1038/nmeth.1226
22 sg:pub.10.1038/nmeth.2762
23 sg:pub.10.1186/1471-2180-11-262
24 schema:datePublished 2015-11-10
25 schema:datePublishedReg 2015-11-10
26 schema:description Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobic acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified ~35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. This analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N648979790c8b48c3852f6cd79de3c5f0
31 N65a183096822493aa0024602265e0033
32 sg:journal.1038436
33 schema:keywords Accumulibacter
34 Accumulibacter phosphatis
35 Candidatus Accumulibacter phosphatis
36 Metatranscriptomic insights
37 PHA synthesis
38 PhaR
39 abundance
40 acetate activation
41 acetyl-CoA formation
42 activation
43 aerobic metabolism
44 analysis
45 array
46 balance
47 base pairs upstream
48 basis
49 biological phosphorus removal
50 blueprint
51 carbon source
52 clusters
53 co-expressed gene clusters
54 co-expressed genes
55 comparative genomic analysis
56 contact
57 control
58 conversion
59 culture
60 cycle
61 cycle phase
62 diverse array
63 electron flux
64 energy
65 energy production
66 enrichment cultures
67 expression
68 factors
69 flux
70 formation
71 framework
72 further investigation
73 gene cluster
74 gene expression
75 genes
76 genomic analysis
77 genomic blueprint
78 glycine utilization
79 hydrogen production
80 hydrogenases
81 importance
82 insights
83 investigation
84 mechanism
85 membrane-bound hydrogenases
86 metabolism
87 metatranscriptomes
88 modulon
89 motif
90 network
91 organisms
92 palindromic motif
93 pathway
94 phase
95 phosphorus
96 phosphorus removal
97 previous studies
98 production
99 putative regulatory motifs
100 reconstruction
101 redox balance
102 regulation
103 regulatory control
104 regulatory mechanisms
105 regulatory motifs
106 regulatory networks
107 relevant trends
108 removal
109 route
110 second motif
111 sequence
112 sigma factor
113 sites
114 source
115 strategies
116 study
117 synthesis
118 transcriptional regulation
119 transcripts
120 trends
121 uncultured organisms
122 unknown strategy
123 upregulation
124 upstream
125 utilization
126 schema:name Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis
127 schema:pagination 810-822
128 schema:productId N1e82bb5c7427489db5dfe4810606f94b
129 N3be45fb09e3a4f72a19d00c45db59178
130 N767d929332f649e3802351b4ecc297c4
131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027052804
132 https://doi.org/10.1038/ismej.2015.155
133 schema:sdDatePublished 2022-05-20T07:31
134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
135 schema:sdPublisher N07324c947e7741e1ae674261644436e6
136 schema:url https://doi.org/10.1038/ismej.2015.155
137 sgo:license sg:explorer/license/
138 sgo:sdDataset articles
139 rdf:type schema:ScholarlyArticle
140 N07324c947e7741e1ae674261644436e6 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 N1a1fc094f57b417f92e7902c216d5977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Glycine
144 rdf:type schema:DefinedTerm
145 N1e82bb5c7427489db5dfe4810606f94b schema:name doi
146 schema:value 10.1038/ismej.2015.155
147 rdf:type schema:PropertyValue
148 N2e90c82bf625430e91dec6aeb7bc17f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Hydrogen
150 rdf:type schema:DefinedTerm
151 N2fdd571b2f2d4c3aa29d2afafb57bfa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Gene Regulatory Networks
153 rdf:type schema:DefinedTerm
154 N39ae5d84d7bc449693b37cb02510b808 rdf:first sg:person.01214220734.63
155 rdf:rest Nd3d8a102db204982be97327beec220b0
156 N3be45fb09e3a4f72a19d00c45db59178 schema:name pubmed_id
157 schema:value 26555245
158 rdf:type schema:PropertyValue
159 N3d60c7914ba94da5bea4a1714950b647 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Phosphorus
161 rdf:type schema:DefinedTerm
162 N5e91e3ca08b64691993a15dc8cdd9173 rdf:first sg:person.01027422372.38
163 rdf:rest Ned9e7e0e376843ae9f37a77f6edd209b
164 N635504594f984fb697328f4ab534e5ee rdf:first sg:person.01007375500.45
165 rdf:rest rdf:nil
166 N648979790c8b48c3852f6cd79de3c5f0 schema:issueNumber 4
167 rdf:type schema:PublicationIssue
168 N65a183096822493aa0024602265e0033 schema:volumeNumber 10
169 rdf:type schema:PublicationVolume
170 N767d929332f649e3802351b4ecc297c4 schema:name dimensions_id
171 schema:value pub.1027052804
172 rdf:type schema:PropertyValue
173 N7e94f9a279354bf0b3f125d0c2fcfa66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Gene Expression Profiling
175 rdf:type schema:DefinedTerm
176 N7f6e145b5bcc4efab251d67dbc0e128d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Biotechnology
178 rdf:type schema:DefinedTerm
179 N800209ac6b05481aa3921f141aa62b06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Bioreactors
181 rdf:type schema:DefinedTerm
182 N95b7c17b3f87478e8aeea9baa6aa7504 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Betaproteobacteria
184 rdf:type schema:DefinedTerm
185 Naf93405a736041479d35fe555e88efc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Acetyl Coenzyme A
187 rdf:type schema:DefinedTerm
188 Nc0d8ec8a4d7249df929e47546d7735e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Metabolic Networks and Pathways
190 rdf:type schema:DefinedTerm
191 Nd3d8a102db204982be97327beec220b0 rdf:first sg:person.01340300137.52
192 rdf:rest N635504594f984fb697328f4ab534e5ee
193 Ned9e7e0e376843ae9f37a77f6edd209b rdf:first sg:person.01040656401.68
194 rdf:rest N39ae5d84d7bc449693b37cb02510b808
195 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
196 schema:name Biological Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
199 schema:name Biochemistry and Cell Biology
200 rdf:type schema:DefinedTerm
201 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
202 schema:name Genetics
203 rdf:type schema:DefinedTerm
204 sg:grant.3111662 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2015.155
205 rdf:type schema:MonetaryGrant
206 sg:journal.1038436 schema:issn 1751-7362
207 1751-7370
208 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
209 schema:publisher Springer Nature
210 rdf:type schema:Periodical
211 sg:person.01007375500.45 schema:affiliation grid-institutes:grid.14003.36
212 schema:familyName McMahon
213 schema:givenName Katherine D
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45
215 rdf:type schema:Person
216 sg:person.01027422372.38 schema:affiliation grid-institutes:grid.14003.36
217 schema:familyName Oyserman
218 schema:givenName Ben O
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027422372.38
220 rdf:type schema:Person
221 sg:person.01040656401.68 schema:affiliation grid-institutes:grid.14003.36
222 schema:familyName Noguera
223 schema:givenName Daniel R
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040656401.68
225 rdf:type schema:Person
226 sg:person.01214220734.63 schema:affiliation grid-institutes:grid.451309.a
227 schema:familyName del Rio
228 schema:givenName Tijana Glavina
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214220734.63
230 rdf:type schema:Person
231 sg:person.01340300137.52 schema:affiliation grid-institutes:grid.451309.a
232 schema:familyName Tringe
233 schema:givenName Susannah G
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340300137.52
235 rdf:type schema:Person
236 sg:pub.10.1007/bf00871641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044272643
237 https://doi.org/10.1007/bf00871641
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/ismej.2008.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021439156
240 https://doi.org/10.1038/ismej.2008.38
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/ismej.2010.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014883658
243 https://doi.org/10.1038/ismej.2010.127
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/ismej.2013.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024199291
246 https://doi.org/10.1038/ismej.2013.117
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
249 https://doi.org/10.1038/nature01644
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/nbt1247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009864240
252 https://doi.org/10.1038/nbt1247
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
255 https://doi.org/10.1038/nmeth.1226
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/nmeth.2762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430428
258 https://doi.org/10.1038/nmeth.2762
259 rdf:type schema:CreativeWork
260 sg:pub.10.1186/1471-2180-11-262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043371157
261 https://doi.org/10.1186/1471-2180-11-262
262 rdf:type schema:CreativeWork
263 grid-institutes:grid.14003.36 schema:alternateName Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA
264 Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA
265 schema:name Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA
266 Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA
267 rdf:type schema:Organization
268 grid-institutes:grid.451309.a schema:alternateName US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
269 schema:name US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...