Comparison of multiple metagenomes using phylogenetic networks based on ecological indices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10

AUTHORS

Suparna Mitra, Jack A Gilbert, Dawn Field, Daniel H Huson

ABSTRACT

Second-generation sequencing technologies are fueling a vast increase in the number and scope of metagenome projects. There is a great need for the development of new methods for visualizing the relationships between multiple metagenomic data sets. To address this, a novel approach is presented that combines the use of taxonomic analysis, ecological indices and non-hierarchical clustering to provide a network representation of the relationships between different metagenome data sets. The approach is illustrated using several published data sets of different types, including metagenomes, metatranscriptomes and 16S ribosomal profiles. Application of the approach to the same data summarized at different taxonomical levels gives rise to remarkably similar networks, indicating that the analysis is very robust. Importantly, the networks provide the both visual definition and metric quantification for the non-rooted relationship between samples, combining the desirable characteristics of other tools into one. More... »

PAGES

1236

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ismej.2010.51

DOI

http://dx.doi.org/10.1038/ismej.2010.51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000387248

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20428222


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of T\u00fcbingen", 
          "id": "https://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Center for Bioinformatics ZBIT, T\u00fcbingen University, T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitra", 
        "givenName": "Suparna", 
        "id": "sg:person.0616260414.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616260414.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plymouth Marine Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.22319.3b", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, Plymouth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilbert", 
        "givenName": "Jack A", 
        "id": "sg:person.0727626545.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727626545.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Ecology and Hydrology", 
          "id": "https://www.grid.ac/institutes/grid.494924.6", 
          "name": [
            "NERC Centre for Ecology and Hydrology, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Field", 
        "givenName": "Dawn", 
        "id": "sg:person.01223211445.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223211445.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of T\u00fcbingen", 
          "id": "https://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Center for Bioinformatics ZBIT, T\u00fcbingen University, T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huson", 
        "givenName": "Daniel H", 
        "id": "sg:person.0766300744.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766300744.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0605127103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008547462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012896623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015047250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02017.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02017.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025987163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5969107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034259503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037734324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0003042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040781551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1942268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046249265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2031098a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050466553", 
          "https://doi.org/10.1038/2031098a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1093857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1931577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2528080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069973928"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "Second-generation sequencing technologies are fueling a vast increase in the number and scope of metagenome projects. There is a great need for the development of new methods for visualizing the relationships between multiple metagenomic data sets. To address this, a novel approach is presented that combines the use of taxonomic analysis, ecological indices and non-hierarchical clustering to provide a network representation of the relationships between different metagenome data sets. The approach is illustrated using several published data sets of different types, including metagenomes, metatranscriptomes and 16S ribosomal profiles. Application of the approach to the same data summarized at different taxonomical levels gives rise to remarkably similar networks, indicating that the analysis is very robust. Importantly, the networks provide the both visual definition and metric quantification for the non-rooted relationship between samples, combining the desirable characteristics of other tools into one.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ismej.2010.51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2758641", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Comparison of multiple metagenomes using phylogenetic networks based on ecological indices", 
    "pagination": "1236", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01d847a0c7532fc6031bf7a349cd39bee3c73ff997ac522f04f0c673afd58388"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20428222"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301086"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ismej.2010.51"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000387248"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ismej.2010.51", 
      "https://app.dimensions.ai/details/publication/pub.1000387248"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ismej201051"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.51'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      50 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ismej.2010.51 schema:about N1202e16d2d7f41f0b4cf61abbc4d7ae6
2 N478473d03abd40c5b26f6b3231f09ab7
3 N4af672e0e17d4e5b8cd2b9c15183be35
4 N5bcf86ee749b48499e10832ae2aad442
5 N7b7dfae8b7b544038aa1f3ce8ecf7675
6 Na64687011763458c98f979fbf22f9e2e
7 Nbe02eb4599ae4def8edcbcc16736f3e5
8 anzsrc-for:08
9 anzsrc-for:0806
10 schema:author N8363195ea3134406850255a03f2fcb42
11 schema:citation sg:pub.10.1038/2031098a0
12 https://doi.org/10.1016/s0022-2836(05)80360-2
13 https://doi.org/10.1073/pnas.0605127103
14 https://doi.org/10.1093/molbev/msh018
15 https://doi.org/10.1093/nar/gkm1000
16 https://doi.org/10.1101/gr.5969107
17 https://doi.org/10.1111/j.1462-2920.2009.02017.x
18 https://doi.org/10.1126/science.1093857
19 https://doi.org/10.1371/journal.pbio.0050075
20 https://doi.org/10.1371/journal.pbio.0050077
21 https://doi.org/10.1371/journal.pone.0003042
22 https://doi.org/10.2307/1931577
23 https://doi.org/10.2307/1942268
24 https://doi.org/10.2307/2528080
25 schema:datePublished 2010-10
26 schema:datePublishedReg 2010-10-01
27 schema:description Second-generation sequencing technologies are fueling a vast increase in the number and scope of metagenome projects. There is a great need for the development of new methods for visualizing the relationships between multiple metagenomic data sets. To address this, a novel approach is presented that combines the use of taxonomic analysis, ecological indices and non-hierarchical clustering to provide a network representation of the relationships between different metagenome data sets. The approach is illustrated using several published data sets of different types, including metagenomes, metatranscriptomes and 16S ribosomal profiles. Application of the approach to the same data summarized at different taxonomical levels gives rise to remarkably similar networks, indicating that the analysis is very robust. Importantly, the networks provide the both visual definition and metric quantification for the non-rooted relationship between samples, combining the desirable characteristics of other tools into one.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N4bdac24742fd4aadaf2c02e383b2abf7
32 Na2bc7d33f77f494ea0d8ae475dc0de25
33 sg:journal.1038436
34 schema:name Comparison of multiple metagenomes using phylogenetic networks based on ecological indices
35 schema:pagination 1236
36 schema:productId N10a188d43bf04604961b25ddf3a7afca
37 N7ff4f8a080514d8e9296027eb25904fb
38 Na4c1c1cea7e84d48a27d284e5166ca21
39 Naff8f995f85c40ca878cfe103a06a5e6
40 Nc24306c4f23d423e8457d071d0b38374
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000387248
42 https://doi.org/10.1038/ismej.2010.51
43 schema:sdDatePublished 2019-04-10T14:48
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nea90d21d1f7e4d6cbb787341f9058c0b
46 schema:url https://www.nature.com/articles/ismej201051
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N10a188d43bf04604961b25ddf3a7afca schema:name doi
51 schema:value 10.1038/ismej.2010.51
52 rdf:type schema:PropertyValue
53 N1202e16d2d7f41f0b4cf61abbc4d7ae6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Metagenome
55 rdf:type schema:DefinedTerm
56 N478473d03abd40c5b26f6b3231f09ab7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Ecosystem
58 rdf:type schema:DefinedTerm
59 N4af672e0e17d4e5b8cd2b9c15183be35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Metagenomics
61 rdf:type schema:DefinedTerm
62 N4bdac24742fd4aadaf2c02e383b2abf7 schema:issueNumber 10
63 rdf:type schema:PublicationIssue
64 N5bcf86ee749b48499e10832ae2aad442 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Gene Expression Profiling
66 rdf:type schema:DefinedTerm
67 N7b7dfae8b7b544038aa1f3ce8ecf7675 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Cluster Analysis
69 rdf:type schema:DefinedTerm
70 N7ff4f8a080514d8e9296027eb25904fb schema:name pubmed_id
71 schema:value 20428222
72 rdf:type schema:PropertyValue
73 N8363195ea3134406850255a03f2fcb42 rdf:first sg:person.0616260414.02
74 rdf:rest Ndf969e36ad3f4fa4a25cf09654f333e4
75 Na2bc7d33f77f494ea0d8ae475dc0de25 schema:volumeNumber 4
76 rdf:type schema:PublicationVolume
77 Na3870adc1bd34909a80473fe52c6505b rdf:first sg:person.0766300744.30
78 rdf:rest rdf:nil
79 Na4c1c1cea7e84d48a27d284e5166ca21 schema:name nlm_unique_id
80 schema:value 101301086
81 rdf:type schema:PropertyValue
82 Na64687011763458c98f979fbf22f9e2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name RNA, Ribosomal, 16S
84 rdf:type schema:DefinedTerm
85 Naff8f995f85c40ca878cfe103a06a5e6 schema:name readcube_id
86 schema:value 01d847a0c7532fc6031bf7a349cd39bee3c73ff997ac522f04f0c673afd58388
87 rdf:type schema:PropertyValue
88 Nbe02eb4599ae4def8edcbcc16736f3e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Phylogeny
90 rdf:type schema:DefinedTerm
91 Nc24306c4f23d423e8457d071d0b38374 schema:name dimensions_id
92 schema:value pub.1000387248
93 rdf:type schema:PropertyValue
94 Nd2b23ff07c45470896cbc9200d0c1b78 rdf:first sg:person.01223211445.99
95 rdf:rest Na3870adc1bd34909a80473fe52c6505b
96 Ndf969e36ad3f4fa4a25cf09654f333e4 rdf:first sg:person.0727626545.37
97 rdf:rest Nd2b23ff07c45470896cbc9200d0c1b78
98 Nea90d21d1f7e4d6cbb787341f9058c0b schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information Systems
105 rdf:type schema:DefinedTerm
106 sg:grant.2758641 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2010.51
107 rdf:type schema:MonetaryGrant
108 sg:journal.1038436 schema:issn 1751-7362
109 1751-7370
110 schema:name The ISME Journal
111 rdf:type schema:Periodical
112 sg:person.01223211445.99 schema:affiliation https://www.grid.ac/institutes/grid.494924.6
113 schema:familyName Field
114 schema:givenName Dawn
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223211445.99
116 rdf:type schema:Person
117 sg:person.0616260414.02 schema:affiliation https://www.grid.ac/institutes/grid.10392.39
118 schema:familyName Mitra
119 schema:givenName Suparna
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616260414.02
121 rdf:type schema:Person
122 sg:person.0727626545.37 schema:affiliation https://www.grid.ac/institutes/grid.22319.3b
123 schema:familyName Gilbert
124 schema:givenName Jack A
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727626545.37
126 rdf:type schema:Person
127 sg:person.0766300744.30 schema:affiliation https://www.grid.ac/institutes/grid.10392.39
128 schema:familyName Huson
129 schema:givenName Daniel H
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766300744.30
131 rdf:type schema:Person
132 sg:pub.10.1038/2031098a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050466553
133 https://doi.org/10.1038/2031098a0
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.0605127103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008547462
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/molbev/msh018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037734324
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/nar/gkm1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015047250
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1101/gr.5969107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259503
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.1462-2920.2009.02017.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021785415
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.1093857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449306
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1371/journal.pbio.0050075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025987163
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1371/journal.pbio.0050077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012896623
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1371/journal.pone.0003042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040781551
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2307/1931577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656007
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2307/1942268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046249265
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2307/2528080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069973928
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.10392.39 schema:alternateName University of Tübingen
162 schema:name Center for Bioinformatics ZBIT, Tübingen University, Tübingen, Germany
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.22319.3b schema:alternateName Plymouth Marine Laboratory
165 schema:name Plymouth Marine Laboratory, Prospect Place, Plymouth, UK
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.494924.6 schema:alternateName Centre for Ecology and Hydrology
168 schema:name NERC Centre for Ecology and Hydrology, Oxford, UK
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...