Microbial methanol uptake in northeast Atlantic waters View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-11-11

AUTHORS

Joanna L Dixon, Rachael Beale, Philip D Nightingale

ABSTRACT

Methanol is the predominant oxygenated volatile organic compound in the troposphere, where it can significantly influence the oxidising capacity of the atmosphere. However, we do not understand which processes control oceanic concentrations, and hence, whether the oceans are a source or a sink to the atmosphere. We report the first methanol loss rates in seawater by demonstrating that 14C-labelled methanol can be used to determine microbial uptake into particulate biomass, and oxidation to 14CO2. We have found that methanol is used predominantly as a microbial energy source, but also demonstrated its use as a carbon source. We report biological methanol oxidation rates between 2.1 and 8.4 nmol l−1 day−1 in surface seawater of the northeast Atlantic. Kinetic experiments predict a Vmax of up to 29 nmol l−1 day−1, with a high affinity Km constant of 9.3 nM in more productive coastal waters. We report surface concentrations of methanol in the western English channel of 97±8 nM (n=4) between May and June 2010, and for the wider temperate North Atlantic waters of 70±13 nM (n=6). The biological turnover time of methanol has been estimated between 7 and 33 days, although kinetic experiments suggest a 7-day turnover in more productive shelf waters. Methanol uptake rates into microbial particles significantly correlated with bacterial and phytoplankton parameters, suggesting that it could be used as a carbon source by some bacteria and possibly some mixotrophic eukaryotes. Our results provide the first methanol loss rates from seawater, which will improve the understanding of the global methanol budget. More... »

PAGES

704-716

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ismej.2010.169

DOI

http://dx.doi.org/10.1038/ismej.2010.169

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015452192

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21068775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methanol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oceans and Seas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phytoplankton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seawater", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK", 
          "id": "http://www.grid.ac/institutes/grid.22319.3b", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dixon", 
        "givenName": "Joanna L", 
        "id": "sg:person.01224644637.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224644637.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK", 
          "id": "http://www.grid.ac/institutes/grid.22319.3b", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beale", 
        "givenName": "Rachael", 
        "id": "sg:person.0667530754.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667530754.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK", 
          "id": "http://www.grid.ac/institutes/grid.22319.3b", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nightingale", 
        "givenName": "Philip D", 
        "id": "sg:person.01237141240.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237141240.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35074067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005104640", 
          "https://doi.org/10.1038/35074067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/378050a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023058212", 
          "https://doi.org/10.1038/378050a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2007.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039241931", 
          "https://doi.org/10.1038/ismej.2007.65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020684815474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028713112", 
          "https://doi.org/10.1023/a:1020684815474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029294543", 
          "https://doi.org/10.1038/nature07236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-002-2017-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003349399", 
          "https://doi.org/10.1007/s00248-002-2017-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2008.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009156745", 
          "https://doi.org/10.1038/ismej.2008.85"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11-11", 
    "datePublishedReg": "2010-11-11", 
    "description": "Methanol is the predominant oxygenated volatile organic compound in the troposphere, where it can significantly influence the oxidising capacity of the atmosphere. However, we do not understand which processes control oceanic concentrations, and hence, whether the oceans are a source or a sink to the atmosphere. We report the first methanol loss rates in seawater by demonstrating that 14C-labelled methanol can be used to determine microbial uptake into particulate biomass, and oxidation to 14CO2. We have found that methanol is used predominantly as a microbial energy source, but also demonstrated its use as a carbon source. We report biological methanol oxidation rates between 2.1 and 8.4\u2009nmol l\u22121 day\u22121 in surface seawater of the northeast Atlantic. Kinetic experiments predict a Vmax of up to 29\u2009nmol l\u22121 day\u22121, with a high affinity Km constant of 9.3\u2009nM in more productive coastal waters. We report surface concentrations of methanol in the western English channel of 97\u00b18\u2009nM (n=4) between May and June 2010, and for the wider temperate North Atlantic waters of 70\u00b113\u2009nM (n=6). The biological turnover time of methanol has been estimated between 7 and 33 days, although kinetic experiments suggest a 7-day turnover in more productive shelf waters. Methanol uptake rates into microbial particles significantly correlated with bacterial and phytoplankton parameters, suggesting that it could be used as a carbon source by some bacteria and possibly some mixotrophic eukaryotes. Our results provide the first methanol loss rates from seawater, which will improve the understanding of the global methanol budget.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ismej.2010.169", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2756074", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "Atlantic water", 
      "productive shelf waters", 
      "North Atlantic waters", 
      "productive coastal waters", 
      "microbial energy source", 
      "biological turnover time", 
      "global methanol budgets", 
      "western English Channel", 
      "northeast Atlantic waters", 
      "methanol uptake rate", 
      "oceanic concentrations", 
      "shelf waters", 
      "surface seawater", 
      "coastal waters", 
      "Northeast Atlantic", 
      "English Channel", 
      "phytoplankton parameters", 
      "methanol oxidation rate", 
      "seawater", 
      "turnover time", 
      "microbial uptake", 
      "volatile organic compounds", 
      "loss rate", 
      "water", 
      "surface concentration", 
      "atmosphere", 
      "organic compounds", 
      "high-affinity Km", 
      "Ocean", 
      "troposphere", 
      "source", 
      "Atlantic", 
      "carbon source", 
      "uptake rate", 
      "sink", 
      "budget", 
      "oxidation rate", 
      "particulate biomass", 
      "microbial particles", 
      "methanol uptake", 
      "concentration", 
      "biomass", 
      "rate", 
      "energy sources", 
      "channels", 
      "particles", 
      "kinetic experiments", 
      "process", 
      "understanding", 
      "experiments", 
      "uptake", 
      "oxidation", 
      "methanol", 
      "time", 
      "nM", 
      "parameters", 
      "turnover", 
      "results", 
      "days", 
      "bacteria", 
      "capacity", 
      "use", 
      "compounds", 
      "eukaryotes", 
      "Km", 
      "Vmax", 
      "first methanol loss rates", 
      "methanol loss rates", 
      "biological methanol oxidation rates", 
      "affinity Km", 
      "more productive coastal waters", 
      "wider temperate North Atlantic waters", 
      "temperate North Atlantic waters", 
      "more productive shelf waters", 
      "mixotrophic eukaryotes", 
      "methanol budget", 
      "Microbial methanol uptake"
    ], 
    "name": "Microbial methanol uptake in northeast Atlantic waters", 
    "pagination": "704-716", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015452192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ismej.2010.169"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21068775"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ismej.2010.169", 
      "https://app.dimensions.ai/details/publication/pub.1015452192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ismej.2010.169"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.169'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.169'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.169'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.169'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      22 PREDICATES      117 URIs      102 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ismej.2010.169 schema:about N1b275042c8b74b5d8fe14ba2c3f2f8c5
2 N3b65370c2ec5406cbef73221332a6419
3 N755a21a666524ffdb7111ac78d87cf11
4 N93d8e5a1542146dca36f15ba0e89542a
5 Nc146295272f149a5b4169b5e1e1b15c8
6 Nc9340ceb4dc34e04a2674c3fd1f1b50d
7 Nd724d905e1594dbc8eaf943c8dfcc330
8 anzsrc-for:06
9 anzsrc-for:0605
10 schema:author Nbbd2f5e313aa43b2be5867f80df6782f
11 schema:citation sg:pub.10.1007/s00248-002-2017-9
12 sg:pub.10.1023/a:1020684815474
13 sg:pub.10.1038/35074067
14 sg:pub.10.1038/378050a0
15 sg:pub.10.1038/ismej.2007.65
16 sg:pub.10.1038/ismej.2008.85
17 sg:pub.10.1038/nature07236
18 schema:datePublished 2010-11-11
19 schema:datePublishedReg 2010-11-11
20 schema:description Methanol is the predominant oxygenated volatile organic compound in the troposphere, where it can significantly influence the oxidising capacity of the atmosphere. However, we do not understand which processes control oceanic concentrations, and hence, whether the oceans are a source or a sink to the atmosphere. We report the first methanol loss rates in seawater by demonstrating that 14C-labelled methanol can be used to determine microbial uptake into particulate biomass, and oxidation to 14CO2. We have found that methanol is used predominantly as a microbial energy source, but also demonstrated its use as a carbon source. We report biological methanol oxidation rates between 2.1 and 8.4 nmol l−1 day−1 in surface seawater of the northeast Atlantic. Kinetic experiments predict a Vmax of up to 29 nmol l−1 day−1, with a high affinity Km constant of 9.3 nM in more productive coastal waters. We report surface concentrations of methanol in the western English channel of 97±8 nM (n=4) between May and June 2010, and for the wider temperate North Atlantic waters of 70±13 nM (n=6). The biological turnover time of methanol has been estimated between 7 and 33 days, although kinetic experiments suggest a 7-day turnover in more productive shelf waters. Methanol uptake rates into microbial particles significantly correlated with bacterial and phytoplankton parameters, suggesting that it could be used as a carbon source by some bacteria and possibly some mixotrophic eukaryotes. Our results provide the first methanol loss rates from seawater, which will improve the understanding of the global methanol budget.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N0c71cbb68ee242b3bde421cd8b0d49c8
25 N727c9a8590254ff58721f314c9ac528c
26 sg:journal.1038436
27 schema:keywords Atlantic
28 Atlantic water
29 English Channel
30 Km
31 Microbial methanol uptake
32 North Atlantic waters
33 Northeast Atlantic
34 Ocean
35 Vmax
36 affinity Km
37 atmosphere
38 bacteria
39 biological methanol oxidation rates
40 biological turnover time
41 biomass
42 budget
43 capacity
44 carbon source
45 channels
46 coastal waters
47 compounds
48 concentration
49 days
50 energy sources
51 eukaryotes
52 experiments
53 first methanol loss rates
54 global methanol budgets
55 high-affinity Km
56 kinetic experiments
57 loss rate
58 methanol
59 methanol budget
60 methanol loss rates
61 methanol oxidation rate
62 methanol uptake
63 methanol uptake rate
64 microbial energy source
65 microbial particles
66 microbial uptake
67 mixotrophic eukaryotes
68 more productive coastal waters
69 more productive shelf waters
70 nM
71 northeast Atlantic waters
72 oceanic concentrations
73 organic compounds
74 oxidation
75 oxidation rate
76 parameters
77 particles
78 particulate biomass
79 phytoplankton parameters
80 process
81 productive coastal waters
82 productive shelf waters
83 rate
84 results
85 seawater
86 shelf waters
87 sink
88 source
89 surface concentration
90 surface seawater
91 temperate North Atlantic waters
92 time
93 troposphere
94 turnover
95 turnover time
96 understanding
97 uptake
98 uptake rate
99 use
100 volatile organic compounds
101 water
102 western English Channel
103 wider temperate North Atlantic waters
104 schema:name Microbial methanol uptake in northeast Atlantic waters
105 schema:pagination 704-716
106 schema:productId N639c2973a8f4436abc974cd6f620ab60
107 Nd9e247d278c5432fa1c2fd839e960118
108 Nddeb90371b394fcab755e6c0e82ffa6c
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015452192
110 https://doi.org/10.1038/ismej.2010.169
111 schema:sdDatePublished 2021-12-01T19:23
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N88b68f3f37d84574a9525f6518dffeed
114 schema:url https://doi.org/10.1038/ismej.2010.169
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N0c71cbb68ee242b3bde421cd8b0d49c8 schema:volumeNumber 5
119 rdf:type schema:PublicationVolume
120 N1b275042c8b74b5d8fe14ba2c3f2f8c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Methanol
122 rdf:type schema:DefinedTerm
123 N3b65370c2ec5406cbef73221332a6419 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Water Microbiology
125 rdf:type schema:DefinedTerm
126 N639c2973a8f4436abc974cd6f620ab60 schema:name dimensions_id
127 schema:value pub.1015452192
128 rdf:type schema:PropertyValue
129 N727c9a8590254ff58721f314c9ac528c schema:issueNumber 4
130 rdf:type schema:PublicationIssue
131 N755a21a666524ffdb7111ac78d87cf11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Phytoplankton
133 rdf:type schema:DefinedTerm
134 N78ab784eca8c4296ba330c511f58af95 rdf:first sg:person.01237141240.57
135 rdf:rest rdf:nil
136 N88b68f3f37d84574a9525f6518dffeed schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 N89b5e526c0014849b3642f3ddb177ac9 rdf:first sg:person.0667530754.28
139 rdf:rest N78ab784eca8c4296ba330c511f58af95
140 N93d8e5a1542146dca36f15ba0e89542a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Bacteria
142 rdf:type schema:DefinedTerm
143 Nbbd2f5e313aa43b2be5867f80df6782f rdf:first sg:person.01224644637.24
144 rdf:rest N89b5e526c0014849b3642f3ddb177ac9
145 Nc146295272f149a5b4169b5e1e1b15c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Oceans and Seas
147 rdf:type schema:DefinedTerm
148 Nc9340ceb4dc34e04a2674c3fd1f1b50d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Biomass
150 rdf:type schema:DefinedTerm
151 Nd724d905e1594dbc8eaf943c8dfcc330 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Seawater
153 rdf:type schema:DefinedTerm
154 Nd9e247d278c5432fa1c2fd839e960118 schema:name pubmed_id
155 schema:value 21068775
156 rdf:type schema:PropertyValue
157 Nddeb90371b394fcab755e6c0e82ffa6c schema:name doi
158 schema:value 10.1038/ismej.2010.169
159 rdf:type schema:PropertyValue
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
164 schema:name Microbiology
165 rdf:type schema:DefinedTerm
166 sg:grant.2756074 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2010.169
167 rdf:type schema:MonetaryGrant
168 sg:journal.1038436 schema:issn 1751-7362
169 1751-7370
170 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.01224644637.24 schema:affiliation grid-institutes:grid.22319.3b
174 schema:familyName Dixon
175 schema:givenName Joanna L
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224644637.24
177 rdf:type schema:Person
178 sg:person.01237141240.57 schema:affiliation grid-institutes:grid.22319.3b
179 schema:familyName Nightingale
180 schema:givenName Philip D
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237141240.57
182 rdf:type schema:Person
183 sg:person.0667530754.28 schema:affiliation grid-institutes:grid.22319.3b
184 schema:familyName Beale
185 schema:givenName Rachael
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667530754.28
187 rdf:type schema:Person
188 sg:pub.10.1007/s00248-002-2017-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003349399
189 https://doi.org/10.1007/s00248-002-2017-9
190 rdf:type schema:CreativeWork
191 sg:pub.10.1023/a:1020684815474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028713112
192 https://doi.org/10.1023/a:1020684815474
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/35074067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005104640
195 https://doi.org/10.1038/35074067
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/378050a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023058212
198 https://doi.org/10.1038/378050a0
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/ismej.2007.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039241931
201 https://doi.org/10.1038/ismej.2007.65
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/ismej.2008.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009156745
204 https://doi.org/10.1038/ismej.2008.85
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nature07236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029294543
207 https://doi.org/10.1038/nature07236
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.22319.3b schema:alternateName Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK
210 schema:name Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon, UK
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...