BIPES, a cost-effective high-throughput method for assessing microbial diversity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-04

AUTHORS

Hong-Wei Zhou, Dong-Fang Li, Nora Fung-Yee Tam, Xiao-Tao Jiang, Hai Zhang, Hua-Fang Sheng, Jin Qin, Xiao Liu, Fei Zou

ABSTRACT

Pyrosequencing of 16S rRNA (16S) variable tags has become the most popular method for assessing microbial diversity, but the method remains costly for the evaluation of large numbers of environmental samples with high sequencing depths. We developed a barcoded Illumina paired-end (PE) sequencing (BIPES) method that sequences each 16S V6 tag from both ends on the Illumina HiSeq 2000, and the PE reads are then overlapped to obtain the V6 tag. The average accuracy of Illumina single-end (SE) reads was only 97.9%, which decreased from ∼99.9% at the start of the read to less than 85% at the end of the read; nevertheless, overlapping of the PE reads significantly increased the sequencing accuracy to 99.65% by verifying the 3' end of each SE in which the sequencing quality was degraded. After the removal of tags with two or more mismatches within the medial 40-70 bases of the reads and of tags with any primer errors, the overall base sequencing accuracy of the BIPES reads was further increased to 99.93%. The BIPES reads reflected the amounts of the various tags in the initial template, but long tags and high GC tags were underestimated. The BIPES method yields 20-50 times more 16S V6 tags than does pyrosequencing in a single-flow cell run, and each of the BIPES reads costs less than 1/40 of a pyrosequencing read. As a laborsaving and cost-effective method, BIPES can be routinely used to analyze the microbial ecology of both environmental and human microbiomes. More... »

PAGES

741

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ismej.2010.160

DOI

http://dx.doi.org/10.1038/ismej.2010.160

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048299429

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20962877


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodiversity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Barcoding, Taxonomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Hong-Wei", 
        "id": "sg:person.0777466453.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777466453.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Genomics Institute", 
          "id": "https://www.grid.ac/institutes/grid.21155.32", 
          "name": [
            "Beijing Genomics Institute, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Dong-Fang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tam", 
        "givenName": "Nora Fung-Yee", 
        "id": "sg:person.0620564105.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620564105.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Genomics Institute", 
          "id": "https://www.grid.ac/institutes/grid.21155.32", 
          "name": [
            "Beijing Genomics Institute, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Xiao-Tao", 
        "id": "sg:person.01236347227.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236347227.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Network Center, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hai", 
        "id": "sg:person.01304462427.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304462427.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheng", 
        "givenName": "Hua-Fang", 
        "id": "sg:person.0676122006.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676122006.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Biochemistry, Hong Kong University, Hong Kong SAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Genomics Institute", 
          "id": "https://www.grid.ac/institutes/grid.21155.32", 
          "name": [
            "Beijing Genomics Institute, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Fei", 
        "id": "sg:person.01154724116.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154724116.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000500855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605127103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008547462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2009.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010222284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.200900181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010604039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.200900181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010604039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00592-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011528739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2008.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011594842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-006-9134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012794989", 
          "https://doi.org/10.1007/s00248-006-9134-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-006-9134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012794989", 
          "https://doi.org/10.1007/s00248-006-9134-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2697(03)00465-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016936888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2697(03)00465-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016936888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1146689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017150973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019669855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0909-636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022138158", 
          "https://doi.org/10.1038/nmeth0909-636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0909-636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022138158", 
          "https://doi.org/10.1038/nmeth0909-636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170002", 
          "https://doi.org/10.1038/nature07540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1565-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034458635", 
          "https://doi.org/10.1007/s00253-008-1565-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1565-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034458635", 
          "https://doi.org/10.1007/s00253-008-1565-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036641443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036641443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01931-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037147539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2008.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037229201", 
          "https://doi.org/10.1038/ismej.2008.69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2007.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037492485", 
          "https://doi.org/10.1038/ismej.2007.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037510125", 
          "https://doi.org/10.1186/gb-2007-8-7-r143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730610", 
          "https://doi.org/10.1038/nmeth.1361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730610", 
          "https://doi.org/10.1038/nmeth.1361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0060280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040152879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042740345", 
          "https://doi.org/10.1038/nmeth.1184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02193.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044325968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02193.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044325968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044732652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2008.01857.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048263178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048444853", 
          "https://doi.org/10.1038/nature08058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048444853", 
          "https://doi.org/10.1038/nature08058"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04", 
    "datePublishedReg": "2011-04-01", 
    "description": "Pyrosequencing of 16S rRNA (16S) variable tags has become the most popular method for assessing microbial diversity, but the method remains costly for the evaluation of large numbers of environmental samples with high sequencing depths. We developed a barcoded Illumina paired-end (PE) sequencing (BIPES) method that sequences each 16S V6 tag from both ends on the Illumina HiSeq 2000, and the PE reads are then overlapped to obtain the V6 tag. The average accuracy of Illumina single-end (SE) reads was only 97.9%, which decreased from \u223c99.9% at the start of the read to less than 85% at the end of the read; nevertheless, overlapping of the PE reads significantly increased the sequencing accuracy to 99.65% by verifying the 3' end of each SE in which the sequencing quality was degraded. After the removal of tags with two or more mismatches within the medial 40-70 bases of the reads and of tags with any primer errors, the overall base sequencing accuracy of the BIPES reads was further increased to 99.93%. The BIPES reads reflected the amounts of the various tags in the initial template, but long tags and high GC tags were underestimated. The BIPES method yields 20-50 times more 16S V6 tags than does pyrosequencing in a single-flow cell run, and each of the BIPES reads costs less than 1/40 of a pyrosequencing read. As a laborsaving and cost-effective method, BIPES can be routinely used to analyze the microbial ecology of both environmental and human microbiomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ismej.2010.160", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4966858", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "BIPES, a cost-effective high-throughput method for assessing microbial diversity", 
    "pagination": "741", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e61762ba85fa94bd310867b262437821d0401fdd338c3ee6e2a22a53d6a1a6da"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20962877"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301086"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ismej.2010.160"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048299429"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ismej.2010.160", 
      "https://app.dimensions.ai/details/publication/pub.1048299429"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ismej2010160"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      64 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ismej.2010.160 schema:about N15c0fbaf6bf640ffbd481142a0095aba
2 N17e867d48c5545a58d9e18cb233cf69b
3 N5cd0a7d8af844a649a17dc1e4a76cb2a
4 N872c83003ae842569cff3d86c26f12bf
5 Na7721c11bef34718bdefc7d399b9917f
6 Nc32e48573cf04ad8969e3b8a7c9f2375
7 Nc75164148b434c28b43cff1476e48db2
8 Nf0af40f4f3544b00be91cfd3baf539fb
9 anzsrc-for:06
10 anzsrc-for:0605
11 schema:author N6288c3d9e60d46818174e4325fe9231a
12 schema:citation sg:pub.10.1007/s00248-006-9134-9
13 sg:pub.10.1007/s00253-008-1565-4
14 sg:pub.10.1038/ismej.2007.53
15 sg:pub.10.1038/ismej.2008.69
16 sg:pub.10.1038/nature07540
17 sg:pub.10.1038/nature08058
18 sg:pub.10.1038/nmeth.1184
19 sg:pub.10.1038/nmeth.1361
20 sg:pub.10.1038/nmeth0909-636
21 sg:pub.10.1186/gb-2007-8-7-r143
22 https://doi.org/10.1002/bies.200900181
23 https://doi.org/10.1016/0022-2836(70)90057-4
24 https://doi.org/10.1016/j.mib.2008.09.011
25 https://doi.org/10.1016/j.mimet.2009.09.012
26 https://doi.org/10.1016/s0003-2697(03)00465-2
27 https://doi.org/10.1073/pnas.0605127103
28 https://doi.org/10.1093/nar/gkn425
29 https://doi.org/10.1093/nar/gkn491
30 https://doi.org/10.1111/j.1462-2920.2008.01857.x
31 https://doi.org/10.1111/j.1462-2920.2009.02051.x
32 https://doi.org/10.1111/j.1462-2920.2010.02193.x
33 https://doi.org/10.1126/science.1146689
34 https://doi.org/10.1126/science.1177486
35 https://doi.org/10.1128/aem.00592-09
36 https://doi.org/10.1128/aem.01931-08
37 https://doi.org/10.1371/journal.pbio.0060280
38 https://doi.org/10.1371/journal.pgen.1000255
39 schema:datePublished 2011-04
40 schema:datePublishedReg 2011-04-01
41 schema:description Pyrosequencing of 16S rRNA (16S) variable tags has become the most popular method for assessing microbial diversity, but the method remains costly for the evaluation of large numbers of environmental samples with high sequencing depths. We developed a barcoded Illumina paired-end (PE) sequencing (BIPES) method that sequences each 16S V6 tag from both ends on the Illumina HiSeq 2000, and the PE reads are then overlapped to obtain the V6 tag. The average accuracy of Illumina single-end (SE) reads was only 97.9%, which decreased from ∼99.9% at the start of the read to less than 85% at the end of the read; nevertheless, overlapping of the PE reads significantly increased the sequencing accuracy to 99.65% by verifying the 3' end of each SE in which the sequencing quality was degraded. After the removal of tags with two or more mismatches within the medial 40-70 bases of the reads and of tags with any primer errors, the overall base sequencing accuracy of the BIPES reads was further increased to 99.93%. The BIPES reads reflected the amounts of the various tags in the initial template, but long tags and high GC tags were underestimated. The BIPES method yields 20-50 times more 16S V6 tags than does pyrosequencing in a single-flow cell run, and each of the BIPES reads costs less than 1/40 of a pyrosequencing read. As a laborsaving and cost-effective method, BIPES can be routinely used to analyze the microbial ecology of both environmental and human microbiomes.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N4be6d1f358ac470da6d51072f41b154c
46 N71c760db2c524c92a4110959aa97ac72
47 sg:journal.1038436
48 schema:name BIPES, a cost-effective high-throughput method for assessing microbial diversity
49 schema:pagination 741
50 schema:productId N6d244c5f9c22430086964ffbb4eab700
51 N78992356add342519e37a560b0483391
52 N872d01ce40c64bd59802e400ad3a8de6
53 Nb59ebc7807424484bf0a87f7b07380a0
54 Ne93a2d53e4ae403cbbe1b2d5dfaeb0a7
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048299429
56 https://doi.org/10.1038/ismej.2010.160
57 schema:sdDatePublished 2019-04-10T13:57
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N136f4cb8d50944c2b3bc1199d6f6a596
60 schema:url https://www.nature.com/articles/ismej2010160
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N136f4cb8d50944c2b3bc1199d6f6a596 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N14733ec99ca647a8864b0778df5c7d0e rdf:first N8bf8e3b40d764b58ac6db4a65256df99
67 rdf:rest Na35c6f1379cf480baeea83c8d5a964f4
68 N15013d9f243d4f61b0b4937729195df7 rdf:first sg:person.01304462427.71
69 rdf:rest N7e254d79e0184e108d7ce756ec225318
70 N15c0fbaf6bf640ffbd481142a0095aba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Environmental Microbiology
72 rdf:type schema:DefinedTerm
73 N17e867d48c5545a58d9e18cb233cf69b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Metagenome
75 rdf:type schema:DefinedTerm
76 N30a664ecee1545c3a7ba660060aea28b schema:affiliation https://www.grid.ac/institutes/grid.194645.b
77 schema:familyName Qin
78 schema:givenName Jin
79 rdf:type schema:Person
80 N3518e30e307f46f18e2f68fa8ebeb628 rdf:first N30a664ecee1545c3a7ba660060aea28b
81 rdf:rest N14733ec99ca647a8864b0778df5c7d0e
82 N4be6d1f358ac470da6d51072f41b154c schema:issueNumber 4
83 rdf:type schema:PublicationIssue
84 N5cd0a7d8af844a649a17dc1e4a76cb2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name RNA, Ribosomal, 16S
86 rdf:type schema:DefinedTerm
87 N6288c3d9e60d46818174e4325fe9231a rdf:first sg:person.0777466453.44
88 rdf:rest Na0f390b447144cebb6a948e14e555679
89 N6c4bc7c4c9014d97be2f115a1001ee60 schema:affiliation https://www.grid.ac/institutes/grid.21155.32
90 schema:familyName Li
91 schema:givenName Dong-Fang
92 rdf:type schema:Person
93 N6d244c5f9c22430086964ffbb4eab700 schema:name nlm_unique_id
94 schema:value 101301086
95 rdf:type schema:PropertyValue
96 N71c760db2c524c92a4110959aa97ac72 schema:volumeNumber 5
97 rdf:type schema:PublicationVolume
98 N78992356add342519e37a560b0483391 schema:name pubmed_id
99 schema:value 20962877
100 rdf:type schema:PropertyValue
101 N7acbcfcfa0cb4f5b96e7ae970aae910b rdf:first sg:person.0620564105.42
102 rdf:rest Nd46e8451edc74a418c543436835bceb9
103 N7e254d79e0184e108d7ce756ec225318 rdf:first sg:person.0676122006.18
104 rdf:rest N3518e30e307f46f18e2f68fa8ebeb628
105 N872c83003ae842569cff3d86c26f12bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name DNA Barcoding, Taxonomic
107 rdf:type schema:DefinedTerm
108 N872d01ce40c64bd59802e400ad3a8de6 schema:name readcube_id
109 schema:value e61762ba85fa94bd310867b262437821d0401fdd338c3ee6e2a22a53d6a1a6da
110 rdf:type schema:PropertyValue
111 N8bf8e3b40d764b58ac6db4a65256df99 schema:affiliation https://www.grid.ac/institutes/grid.21155.32
112 schema:familyName Liu
113 schema:givenName Xiao
114 rdf:type schema:Person
115 Na0f390b447144cebb6a948e14e555679 rdf:first N6c4bc7c4c9014d97be2f115a1001ee60
116 rdf:rest N7acbcfcfa0cb4f5b96e7ae970aae910b
117 Na35c6f1379cf480baeea83c8d5a964f4 rdf:first sg:person.01154724116.01
118 rdf:rest rdf:nil
119 Na7721c11bef34718bdefc7d399b9917f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Polymerase Chain Reaction
121 rdf:type schema:DefinedTerm
122 Nb59ebc7807424484bf0a87f7b07380a0 schema:name dimensions_id
123 schema:value pub.1048299429
124 rdf:type schema:PropertyValue
125 Nc32e48573cf04ad8969e3b8a7c9f2375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Biodiversity
127 rdf:type schema:DefinedTerm
128 Nc75164148b434c28b43cff1476e48db2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name High-Throughput Nucleotide Sequencing
130 rdf:type schema:DefinedTerm
131 Nd46e8451edc74a418c543436835bceb9 rdf:first sg:person.01236347227.24
132 rdf:rest N15013d9f243d4f61b0b4937729195df7
133 Ne93a2d53e4ae403cbbe1b2d5dfaeb0a7 schema:name doi
134 schema:value 10.1038/ismej.2010.160
135 rdf:type schema:PropertyValue
136 Nf0af40f4f3544b00be91cfd3baf539fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name DNA Primers
138 rdf:type schema:DefinedTerm
139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biological Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
143 schema:name Microbiology
144 rdf:type schema:DefinedTerm
145 sg:grant.4966858 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2010.160
146 rdf:type schema:MonetaryGrant
147 sg:journal.1038436 schema:issn 1751-7362
148 1751-7370
149 schema:name The ISME Journal
150 rdf:type schema:Periodical
151 sg:person.01154724116.01 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
152 schema:familyName Zou
153 schema:givenName Fei
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154724116.01
155 rdf:type schema:Person
156 sg:person.01236347227.24 schema:affiliation https://www.grid.ac/institutes/grid.21155.32
157 schema:familyName Jiang
158 schema:givenName Xiao-Tao
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236347227.24
160 rdf:type schema:Person
161 sg:person.01304462427.71 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
162 schema:familyName Zhang
163 schema:givenName Hai
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304462427.71
165 rdf:type schema:Person
166 sg:person.0620564105.42 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
167 schema:familyName Tam
168 schema:givenName Nora Fung-Yee
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620564105.42
170 rdf:type schema:Person
171 sg:person.0676122006.18 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
172 schema:familyName Sheng
173 schema:givenName Hua-Fang
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676122006.18
175 rdf:type schema:Person
176 sg:person.0777466453.44 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
177 schema:familyName Zhou
178 schema:givenName Hong-Wei
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777466453.44
180 rdf:type schema:Person
181 sg:pub.10.1007/s00248-006-9134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012794989
182 https://doi.org/10.1007/s00248-006-9134-9
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00253-008-1565-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034458635
185 https://doi.org/10.1007/s00253-008-1565-4
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/ismej.2007.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037492485
188 https://doi.org/10.1038/ismej.2007.53
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ismej.2008.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037229201
191 https://doi.org/10.1038/ismej.2008.69
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
194 https://doi.org/10.1038/nature07540
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature08058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048444853
197 https://doi.org/10.1038/nature08058
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
200 https://doi.org/10.1038/nmeth.1184
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth.1361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039730610
203 https://doi.org/10.1038/nmeth.1361
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nmeth0909-636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022138158
206 https://doi.org/10.1038/nmeth0909-636
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
209 https://doi.org/10.1186/gb-2007-8-7-r143
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1002/bies.200900181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010604039
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.mib.2008.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011594842
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.mimet.2009.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010222284
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0003-2697(03)00465-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016936888
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0605127103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008547462
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/nar/gkn491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044732652
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/j.1462-2920.2008.01857.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048263178
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/j.1462-2920.2009.02051.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036641443
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/j.1462-2920.2010.02193.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044325968
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.1146689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017150973
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.1177486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019669855
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1128/aem.00592-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011528739
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1128/aem.01931-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037147539
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1371/journal.pbio.0060280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040152879
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1371/journal.pgen.1000255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000500855
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
246 schema:name Department of Biochemistry, Hong Kong University, Hong Kong SAR, China
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.21155.32 schema:alternateName Beijing Genomics Institute
249 schema:name Beijing Genomics Institute, Shenzhen, Guangdong, China
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.284723.8 schema:alternateName Southern Medical University
252 schema:name Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
253 Network Center, Southern Medical University, Guangzhou, Guangdong, China
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
256 schema:name Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...