BIPES, a cost-effective high-throughput method for assessing microbial diversity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10-21

AUTHORS

Hong-Wei Zhou, Dong-Fang Li, Nora Fung-Yee Tam, Xiao-Tao Jiang, Hai Zhang, Hua-Fang Sheng, Jin Qin, Xiao Liu, Fei Zou

ABSTRACT

Pyrosequencing of 16S rRNA (16S) variable tags has become the most popular method for assessing microbial diversity, but the method remains costly for the evaluation of large numbers of environmental samples with high sequencing depths. We developed a barcoded Illumina paired-end (PE) sequencing (BIPES) method that sequences each 16S V6 tag from both ends on the Illumina HiSeq 2000, and the PE reads are then overlapped to obtain the V6 tag. The average accuracy of Illumina single-end (SE) reads was only 97.9%, which decreased from ∼99.9% at the start of the read to less than 85% at the end of the read; nevertheless, overlapping of the PE reads significantly increased the sequencing accuracy to 99.65% by verifying the 3′ end of each SE in which the sequencing quality was degraded. After the removal of tags with two or more mismatches within the medial 40–70 bases of the reads and of tags with any primer errors, the overall base sequencing accuracy of the BIPES reads was further increased to 99.93%. The BIPES reads reflected the amounts of the various tags in the initial template, but long tags and high GC tags were underestimated. The BIPES method yields 20–50 times more 16S V6 tags than does pyrosequencing in a single-flow cell run, and each of the BIPES reads costs less than 1/40 of a pyrosequencing read. As a laborsaving and cost-effective method, BIPES can be routinely used to analyze the microbial ecology of both environmental and human microbiomes. More... »

PAGES

741-749

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ismej.2010.160

DOI

http://dx.doi.org/10.1038/ismej.2010.160

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048299429

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20962877


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodiversity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Barcoding, Taxonomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Hong-Wei", 
        "id": "sg:person.0777466453.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777466453.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Genomics Institute, Shenzhen, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.21155.32", 
          "name": [
            "Beijing Genomics Institute, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Dong-Fang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tam", 
        "givenName": "Nora Fung-Yee", 
        "id": "sg:person.0620564105.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620564105.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Genomics Institute, Shenzhen, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.21155.32", 
          "name": [
            "Beijing Genomics Institute, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Xiao-Tao", 
        "id": "sg:person.01236347227.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236347227.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Network Center, Southern Medical University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Network Center, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hai", 
        "id": "sg:person.01304462427.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304462427.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheng", 
        "givenName": "Hua-Fang", 
        "id": "sg:person.0676122006.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676122006.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, Hong Kong University, Hong Kong SAR, China", 
          "id": "http://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Biochemistry, Hong Kong University, Hong Kong SAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Genomics Institute, Shenzhen, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.21155.32", 
          "name": [
            "Beijing Genomics Institute, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xiao", 
        "id": "sg:person.0655762221.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655762221.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Fei", 
        "id": "sg:person.01154724116.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154724116.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042740345", 
          "https://doi.org/10.1038/nmeth.1184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2007.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037492485", 
          "https://doi.org/10.1038/ismej.2007.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048444853", 
          "https://doi.org/10.1038/nature08058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1565-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034458635", 
          "https://doi.org/10.1007/s00253-008-1565-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170002", 
          "https://doi.org/10.1038/nature07540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0909-636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022138158", 
          "https://doi.org/10.1038/nmeth0909-636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730610", 
          "https://doi.org/10.1038/nmeth.1361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2008.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037229201", 
          "https://doi.org/10.1038/ismej.2008.69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037510125", 
          "https://doi.org/10.1186/gb-2007-8-7-r143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-006-9134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012794989", 
          "https://doi.org/10.1007/s00248-006-9134-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10-21", 
    "datePublishedReg": "2010-10-21", 
    "description": "Pyrosequencing of 16S rRNA (16S) variable tags has become the most popular method for assessing microbial diversity, but the method remains costly for the evaluation of large numbers of environmental samples with high sequencing depths. We developed a barcoded Illumina paired-end (PE) sequencing (BIPES) method that sequences each 16S V6 tag from both ends on the Illumina HiSeq 2000, and the PE reads are then overlapped to obtain the V6 tag. The average accuracy of Illumina single-end (SE) reads was only 97.9%, which decreased from \u223c99.9% at the start of the read to less than 85% at the end of the read; nevertheless, overlapping of the PE reads significantly increased the sequencing accuracy to 99.65% by verifying the 3\u2032 end of each SE in which the sequencing quality was degraded. After the removal of tags with two or more mismatches within the medial 40\u201370 bases of the reads and of tags with any primer errors, the overall base sequencing accuracy of the BIPES reads was further increased to 99.93%. The BIPES reads reflected the amounts of the various tags in the initial template, but long tags and high GC tags were underestimated. The BIPES method yields 20\u201350 times more 16S V6 tags than does pyrosequencing in a single-flow cell run, and each of the BIPES reads costs less than 1/40 of a pyrosequencing read. As a laborsaving and cost-effective method, BIPES can be routinely used to analyze the microbial ecology of both environmental and human microbiomes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ismej.2010.160", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4966858", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "microbial diversity", 
      "PE reads", 
      "Illumina single-end reads", 
      "cost-effective high-throughput method", 
      "paired-end sequencing method", 
      "Illumina HiSeq 2000", 
      "single-end reads", 
      "high sequencing depth", 
      "sequencing accuracy", 
      "microbial ecology", 
      "high-throughput method", 
      "HiSeq 2000", 
      "pyrosequencing reads", 
      "sequencing depth", 
      "sequencing methods", 
      "human microbiome", 
      "reads", 
      "bipes", 
      "sequencing quality", 
      "long tags", 
      "diversity", 
      "tags", 
      "environmental samples", 
      "ecology", 
      "removal of tags", 
      "pyrosequencing", 
      "microbiome", 
      "cell run", 
      "more mismatches", 
      "large number", 
      "initial template", 
      "cost-effective method", 
      "end", 
      "template", 
      "basis", 
      "number", 
      "overlapping", 
      "Se", 
      "amount", 
      "removal", 
      "popular method", 
      "samples", 
      "depth", 
      "method", 
      "mismatch", 
      "time", 
      "start", 
      "laborsaving", 
      "quality", 
      "run", 
      "average accuracy", 
      "evaluation", 
      "accuracy", 
      "error"
    ], 
    "name": "BIPES, a cost-effective high-throughput method for assessing microbial diversity", 
    "pagination": "741-749", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048299429"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ismej.2010.160"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20962877"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ismej.2010.160", 
      "https://app.dimensions.ai/details/publication/pub.1048299429"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ismej.2010.160"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.160'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      97 URIs      79 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ismej.2010.160 schema:about N03d09284ffe5438a8635fcd78964aa53
2 N2a290976e0eb4ed59919985d93615e55
3 N2e94386dd4d840a3a15081e759446b61
4 N3826966e6a24450c86c98062a65bb37a
5 N727e4ff9fb584df6bbae6206d8ee7bc7
6 N864f711ad00a4b90ae81db42d397cdd8
7 N8d66e5509cde43918d1d3206b9edc8f3
8 Nfe12ba7fca664e4db9a3216541c9fa3a
9 anzsrc-for:06
10 anzsrc-for:0605
11 schema:author N3fdaadabb5a64846aaee8d828634ff78
12 schema:citation sg:pub.10.1007/s00248-006-9134-9
13 sg:pub.10.1007/s00253-008-1565-4
14 sg:pub.10.1038/ismej.2007.53
15 sg:pub.10.1038/ismej.2008.69
16 sg:pub.10.1038/nature07540
17 sg:pub.10.1038/nature08058
18 sg:pub.10.1038/nmeth.1184
19 sg:pub.10.1038/nmeth.1361
20 sg:pub.10.1038/nmeth0909-636
21 sg:pub.10.1186/gb-2007-8-7-r143
22 schema:datePublished 2010-10-21
23 schema:datePublishedReg 2010-10-21
24 schema:description Pyrosequencing of 16S rRNA (16S) variable tags has become the most popular method for assessing microbial diversity, but the method remains costly for the evaluation of large numbers of environmental samples with high sequencing depths. We developed a barcoded Illumina paired-end (PE) sequencing (BIPES) method that sequences each 16S V6 tag from both ends on the Illumina HiSeq 2000, and the PE reads are then overlapped to obtain the V6 tag. The average accuracy of Illumina single-end (SE) reads was only 97.9%, which decreased from ∼99.9% at the start of the read to less than 85% at the end of the read; nevertheless, overlapping of the PE reads significantly increased the sequencing accuracy to 99.65% by verifying the 3′ end of each SE in which the sequencing quality was degraded. After the removal of tags with two or more mismatches within the medial 40–70 bases of the reads and of tags with any primer errors, the overall base sequencing accuracy of the BIPES reads was further increased to 99.93%. The BIPES reads reflected the amounts of the various tags in the initial template, but long tags and high GC tags were underestimated. The BIPES method yields 20–50 times more 16S V6 tags than does pyrosequencing in a single-flow cell run, and each of the BIPES reads costs less than 1/40 of a pyrosequencing read. As a laborsaving and cost-effective method, BIPES can be routinely used to analyze the microbial ecology of both environmental and human microbiomes.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N5fdbc498614f44c996c8c26f25d85649
28 N757e3b6a68864ac6ac4ccf1afe57a555
29 sg:journal.1038436
30 schema:keywords HiSeq 2000
31 Illumina HiSeq 2000
32 Illumina single-end reads
33 PE reads
34 Se
35 accuracy
36 amount
37 average accuracy
38 basis
39 bipes
40 cell run
41 cost-effective high-throughput method
42 cost-effective method
43 depth
44 diversity
45 ecology
46 end
47 environmental samples
48 error
49 evaluation
50 high sequencing depth
51 high-throughput method
52 human microbiome
53 initial template
54 laborsaving
55 large number
56 long tags
57 method
58 microbial diversity
59 microbial ecology
60 microbiome
61 mismatch
62 more mismatches
63 number
64 overlapping
65 paired-end sequencing method
66 popular method
67 pyrosequencing
68 pyrosequencing reads
69 quality
70 reads
71 removal
72 removal of tags
73 run
74 samples
75 sequencing accuracy
76 sequencing depth
77 sequencing methods
78 sequencing quality
79 single-end reads
80 start
81 tags
82 template
83 time
84 schema:name BIPES, a cost-effective high-throughput method for assessing microbial diversity
85 schema:pagination 741-749
86 schema:productId N006e076102ca4c73a6f18b9c612e864a
87 N4f50c5ba6cc54a44ae52f2c6af583eca
88 Na6f73d9c4eab491b8cf89963a713bb84
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048299429
90 https://doi.org/10.1038/ismej.2010.160
91 schema:sdDatePublished 2022-09-02T15:55
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N67eaf652f8cb493fa337235069287e46
94 schema:url https://doi.org/10.1038/ismej.2010.160
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N006e076102ca4c73a6f18b9c612e864a schema:name doi
99 schema:value 10.1038/ismej.2010.160
100 rdf:type schema:PropertyValue
101 N00e03cbbb61d467b85d752edaa309e16 rdf:first sg:person.0676122006.18
102 rdf:rest N1c4d3dc432ba450e8d213518fa450403
103 N03d09284ffe5438a8635fcd78964aa53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name High-Throughput Nucleotide Sequencing
105 rdf:type schema:DefinedTerm
106 N1c4d3dc432ba450e8d213518fa450403 rdf:first N50a59a6ff18848dea69c18e22bc4bcb1
107 rdf:rest Nff3e68e1800c441e856063c7686a0681
108 N2a290976e0eb4ed59919985d93615e55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Polymerase Chain Reaction
110 rdf:type schema:DefinedTerm
111 N2c9b2767d8784f48a456af9e6d30ce9e rdf:first sg:person.0620564105.42
112 rdf:rest N84d75db4fb464bdc895e1514acab3d98
113 N2e94386dd4d840a3a15081e759446b61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name DNA Barcoding, Taxonomic
115 rdf:type schema:DefinedTerm
116 N3826966e6a24450c86c98062a65bb37a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Environmental Microbiology
118 rdf:type schema:DefinedTerm
119 N3fdaadabb5a64846aaee8d828634ff78 rdf:first sg:person.0777466453.44
120 rdf:rest N40988b6c582a4a8daf84d8a7696be8e0
121 N40988b6c582a4a8daf84d8a7696be8e0 rdf:first N9129cb82f5d9463bb7baafacd97cdad2
122 rdf:rest N2c9b2767d8784f48a456af9e6d30ce9e
123 N4e54192142cf4fb987f2ea953aaeba65 rdf:first sg:person.01304462427.71
124 rdf:rest N00e03cbbb61d467b85d752edaa309e16
125 N4f50c5ba6cc54a44ae52f2c6af583eca schema:name pubmed_id
126 schema:value 20962877
127 rdf:type schema:PropertyValue
128 N50a59a6ff18848dea69c18e22bc4bcb1 schema:affiliation grid-institutes:grid.194645.b
129 schema:familyName Qin
130 schema:givenName Jin
131 rdf:type schema:Person
132 N5fdbc498614f44c996c8c26f25d85649 schema:issueNumber 4
133 rdf:type schema:PublicationIssue
134 N67eaf652f8cb493fa337235069287e46 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N727e4ff9fb584df6bbae6206d8ee7bc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Metagenome
138 rdf:type schema:DefinedTerm
139 N757e3b6a68864ac6ac4ccf1afe57a555 schema:volumeNumber 5
140 rdf:type schema:PublicationVolume
141 N84d75db4fb464bdc895e1514acab3d98 rdf:first sg:person.01236347227.24
142 rdf:rest N4e54192142cf4fb987f2ea953aaeba65
143 N864f711ad00a4b90ae81db42d397cdd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Biodiversity
145 rdf:type schema:DefinedTerm
146 N8d66e5509cde43918d1d3206b9edc8f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name RNA, Ribosomal, 16S
148 rdf:type schema:DefinedTerm
149 N9129cb82f5d9463bb7baafacd97cdad2 schema:affiliation grid-institutes:grid.21155.32
150 schema:familyName Li
151 schema:givenName Dong-Fang
152 rdf:type schema:Person
153 Na6f73d9c4eab491b8cf89963a713bb84 schema:name dimensions_id
154 schema:value pub.1048299429
155 rdf:type schema:PropertyValue
156 Neb0c04c4d9c4491e8c596320efea58f8 rdf:first sg:person.01154724116.01
157 rdf:rest rdf:nil
158 Nfe12ba7fca664e4db9a3216541c9fa3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name DNA Primers
160 rdf:type schema:DefinedTerm
161 Nff3e68e1800c441e856063c7686a0681 rdf:first sg:person.0655762221.21
162 rdf:rest Neb0c04c4d9c4491e8c596320efea58f8
163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
164 schema:name Biological Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
167 schema:name Microbiology
168 rdf:type schema:DefinedTerm
169 sg:grant.4966858 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2010.160
170 rdf:type schema:MonetaryGrant
171 sg:journal.1038436 schema:issn 1751-7362
172 1751-7370
173 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
174 schema:publisher Springer Nature
175 rdf:type schema:Periodical
176 sg:person.01154724116.01 schema:affiliation grid-institutes:grid.284723.8
177 schema:familyName Zou
178 schema:givenName Fei
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154724116.01
180 rdf:type schema:Person
181 sg:person.01236347227.24 schema:affiliation grid-institutes:grid.21155.32
182 schema:familyName Jiang
183 schema:givenName Xiao-Tao
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236347227.24
185 rdf:type schema:Person
186 sg:person.01304462427.71 schema:affiliation grid-institutes:grid.284723.8
187 schema:familyName Zhang
188 schema:givenName Hai
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304462427.71
190 rdf:type schema:Person
191 sg:person.0620564105.42 schema:affiliation grid-institutes:grid.35030.35
192 schema:familyName Tam
193 schema:givenName Nora Fung-Yee
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620564105.42
195 rdf:type schema:Person
196 sg:person.0655762221.21 schema:affiliation grid-institutes:grid.21155.32
197 schema:familyName Liu
198 schema:givenName Xiao
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655762221.21
200 rdf:type schema:Person
201 sg:person.0676122006.18 schema:affiliation grid-institutes:grid.284723.8
202 schema:familyName Sheng
203 schema:givenName Hua-Fang
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676122006.18
205 rdf:type schema:Person
206 sg:person.0777466453.44 schema:affiliation grid-institutes:grid.284723.8
207 schema:familyName Zhou
208 schema:givenName Hong-Wei
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777466453.44
210 rdf:type schema:Person
211 sg:pub.10.1007/s00248-006-9134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012794989
212 https://doi.org/10.1007/s00248-006-9134-9
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s00253-008-1565-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034458635
215 https://doi.org/10.1007/s00253-008-1565-4
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/ismej.2007.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037492485
218 https://doi.org/10.1038/ismej.2007.53
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/ismej.2008.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037229201
221 https://doi.org/10.1038/ismej.2008.69
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
224 https://doi.org/10.1038/nature07540
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nature08058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048444853
227 https://doi.org/10.1038/nature08058
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
230 https://doi.org/10.1038/nmeth.1184
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nmeth.1361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039730610
233 https://doi.org/10.1038/nmeth.1361
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nmeth0909-636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022138158
236 https://doi.org/10.1038/nmeth0909-636
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
239 https://doi.org/10.1186/gb-2007-8-7-r143
240 rdf:type schema:CreativeWork
241 grid-institutes:grid.194645.b schema:alternateName Department of Biochemistry, Hong Kong University, Hong Kong SAR, China
242 schema:name Department of Biochemistry, Hong Kong University, Hong Kong SAR, China
243 rdf:type schema:Organization
244 grid-institutes:grid.21155.32 schema:alternateName Beijing Genomics Institute, Shenzhen, Guangdong, China
245 schema:name Beijing Genomics Institute, Shenzhen, Guangdong, China
246 rdf:type schema:Organization
247 grid-institutes:grid.284723.8 schema:alternateName Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
248 Network Center, Southern Medical University, Guangzhou, Guangdong, China
249 schema:name Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
250 Network Center, Southern Medical University, Guangzhou, Guangdong, China
251 rdf:type schema:Organization
252 grid-institutes:grid.35030.35 schema:alternateName Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
253 schema:name Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...