Quantitative analysis of a deeply sequenced marine microbial metatranscriptome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09-16

AUTHORS

Scott M Gifford, Shalabh Sharma, Johanna M Rinta-Kanto, Mary Ann Moran

ABSTRACT

The potential of metatranscriptomic sequencing to provide insights into the environmental factors that regulate microbial activities depends on how fully the sequence libraries capture community expression (that is, sample-sequencing depth and coverage depth), and the sensitivity with which expression differences between communities can be detected (that is, statistical power for hypothesis testing). In this study, we use an internal standard approach to make absolute (per liter) estimates of transcript numbers, a significant advantage over proportional estimates that can be biased by expression changes in unrelated genes. Coastal waters of the southeastern United States contain 1 × 1012 bacterioplankton mRNA molecules per liter of seawater (∼200 mRNA molecules per bacterial cell). Even for the large bacterioplankton libraries obtained in this study (∼500 000 possible protein-encoding sequences in each of two libraries after discarding rRNAs and small RNAs from >1 million 454 FLX pyrosequencing reads), sample-sequencing depth was only 0.00001%. Expression levels of 82 genes diagnostic for transformations in the marine nitrogen, phosphorus and sulfur cycles ranged from below detection (<1 × 106 transcripts per liter) for 36 genes (for example, phosphonate metabolism gene phnH, dissimilatory nitrate reductase subunit napA) to >2.7 × 109 transcripts per liter (ammonia transporter amt and ammonia monooxygenase subunit amoC). Half of the categories for which expression was detected, however, had too few copy numbers for robust statistical resolution, as would be required for comparative (experimental or time-series) expression studies. By representing whole community gene abundance and expression in absolute units (per volume or mass of environment), ‘omics’ data can be better leveraged to improve understanding of microbially mediated processes in the ocean. More... »

PAGES

461-472

References to SciGraph publications

  • 2008-07. Global mRNA changes in microarray experiments in NATURE BIOTECHNOLOGY
  • 2008-07-09. A unified approach to false discovery rate estimation in BMC BIOINFORMATICS
  • 2009-02-19. In situ transcriptomic analysis of the globally important keystone N2-fixing taxon Crocosphaera watsonii in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2006-03-20. An application of statistics to comparative metagenomics in BMC BIOINFORMATICS
  • 2003-09-11. The COG database: an updated version includes eukaryotes in BMC BIOINFORMATICS
  • 2009-07-09. Systematic artifacts in metagenomes from complex microbial communities in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2009-07-02. Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2010-11-18. Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2005-07-31. Genome sequencing in microfabricated high-density picolitre reactors in NATURE
  • 2010-03-02. A scaling normalization method for differential expression analysis of RNA-seq data in GENOME BIOLOGY
  • 1988-05. Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments in MICROBIAL ECOLOGY
  • 2009-05. Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column in NATURE
  • 2008-03-12. Functional metagenomic profiling of nine biomes in NATURE
  • 2010-03-11. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ismej.2010.141

    DOI

    http://dx.doi.org/10.1038/ismej.2010.141

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013224697

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20844569


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomic Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seawater", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Southeastern United States", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Marine Sciences, University of Georgia, Athens, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213876.9", 
              "name": [
                "Department of Marine Sciences, University of Georgia, Athens, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gifford", 
            "givenName": "Scott M", 
            "id": "sg:person.01230344374.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230344374.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Marine Sciences, University of Georgia, Athens, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213876.9", 
              "name": [
                "Department of Marine Sciences, University of Georgia, Athens, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharma", 
            "givenName": "Shalabh", 
            "id": "sg:person.01106310447.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106310447.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Marine Sciences, University of Georgia, Athens, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213876.9", 
              "name": [
                "Department of Marine Sciences, University of Georgia, Athens, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rinta-Kanto", 
            "givenName": "Johanna M", 
            "id": "sg:person.0772062047.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772062047.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Marine Sciences, University of Georgia, Athens, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213876.9", 
              "name": [
                "Department of Marine Sciences, University of Georgia, Athens, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moran", 
            "givenName": "Mary Ann", 
            "id": "sg:person.01215610154.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215610154.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-9-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041933952", 
              "https://doi.org/10.1186/1471-2105-9-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005410968", 
              "https://doi.org/10.1038/ismej.2009.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024002450", 
              "https://doi.org/10.1038/ismej.2009.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0708-741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018566556", 
              "https://doi.org/10.1038/nbt0708-741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029921262", 
              "https://doi.org/10.1038/nature08055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938739", 
              "https://doi.org/10.1038/ismej.2009.72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02012642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033018684", 
              "https://doi.org/10.1007/bf02012642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044943589", 
              "https://doi.org/10.1186/1471-2105-7-162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014275780", 
              "https://doi.org/10.1038/ismej.2010.172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013163036", 
              "https://doi.org/10.1186/1471-2105-4-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038520885", 
              "https://doi.org/10.1038/ismej.2010.18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050509557", 
              "https://doi.org/10.1186/gb-2010-11-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047805213", 
              "https://doi.org/10.1038/nature06810"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-09-16", 
        "datePublishedReg": "2010-09-16", 
        "description": "The potential of metatranscriptomic sequencing to provide insights into the environmental factors that regulate microbial activities depends on how fully the sequence libraries capture community expression (that is, sample-sequencing depth and coverage depth), and the sensitivity with which expression differences between communities can be detected (that is, statistical power for hypothesis testing). In this study, we use an internal standard approach to make absolute (per liter) estimates of transcript numbers, a significant advantage over proportional estimates that can be biased by expression changes in unrelated genes. Coastal waters of the southeastern United States contain 1 \u00d7 1012 bacterioplankton mRNA molecules per liter of seawater (\u223c200 mRNA molecules per bacterial cell). Even for the large bacterioplankton libraries obtained in this study (\u223c500\u2009000 possible protein-encoding sequences in each of two libraries after discarding rRNAs and small RNAs from >1 million 454 FLX pyrosequencing reads), sample-sequencing depth was only 0.00001%. Expression levels of 82 genes diagnostic for transformations in the marine nitrogen, phosphorus and sulfur cycles ranged from below detection (<1 \u00d7 106 transcripts per liter) for 36 genes (for example, phosphonate metabolism gene phnH, dissimilatory nitrate reductase subunit napA) to >2.7 \u00d7 109 transcripts per liter (ammonia transporter amt and ammonia monooxygenase subunit amoC). Half of the categories for which expression was detected, however, had too few copy numbers for robust statistical resolution, as would be required for comparative (experimental or time-series) expression studies. By representing whole community gene abundance and expression in absolute units (per volume or mass of environment), \u2018omics\u2019 data can be better leveraged to improve understanding of microbially mediated processes in the ocean.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ismej.2010.141", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3076450", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2994753", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1038436", 
            "issn": [
              "1751-7362", 
              "1751-7370"
            ], 
            "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "comparative expression studies", 
          "sample sequencing depths", 
          "microbial metatranscriptomes", 
          "unrelated genes", 
          "metatranscriptomic sequencing", 
          "gene abundance", 
          "expression differences", 
          "mRNA molecules", 
          "expression studies", 
          "expression changes", 
          "marine nitrogen", 
          "transcript numbers", 
          "copy number", 
          "microbial activity", 
          "genes", 
          "sulfur cycle", 
          "expression levels", 
          "southeastern United States", 
          "coastal waters", 
          "environmental factors", 
          "expression", 
          "metatranscriptomes", 
          "omics", 
          "transcripts", 
          "statistical resolution", 
          "sequencing", 
          "abundance", 
          "absolute estimates", 
          "community expression", 
          "sequence", 
          "library", 
          "internal standard approach", 
          "molecules", 
          "insights", 
          "proportional estimates", 
          "phosphorus", 
          "nitrogen", 
          "community", 
          "activity", 
          "seawater", 
          "Ocean", 
          "cycle", 
          "number", 
          "understanding", 
          "quantitative analysis", 
          "study", 
          "levels", 
          "potential", 
          "factors", 
          "changes", 
          "analysis", 
          "water", 
          "process", 
          "half", 
          "transformation", 
          "differences", 
          "estimates", 
          "sensitivity", 
          "absolute units", 
          "resolution", 
          "data", 
          "United States", 
          "approach", 
          "detection", 
          "depth", 
          "units", 
          "state", 
          "standard approach", 
          "significant advantages", 
          "advantages", 
          "categories"
        ], 
        "name": "Quantitative analysis of a deeply sequenced marine microbial metatranscriptome", 
        "pagination": "461-472", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013224697"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ismej.2010.141"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20844569"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ismej.2010.141", 
          "https://app.dimensions.ai/details/publication/pub.1013224697"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_525.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ismej.2010.141"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.141'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.141'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.141'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2010.141'


     

    This table displays all metadata directly associated to this object as RDF triples.

    261 TRIPLES      21 PREDICATES      122 URIs      99 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ismej.2010.141 schema:about N12f6c8a1669242399922550739c6e56c
    2 N395e4c5d87664d3496585a782b0eca37
    3 N646fc8b92c8e46a1a50962ad6c5df980
    4 N96ca8f109d054b539d9022caf5ee4a00
    5 N9d9018e064484bfc9569c9b2782466c2
    6 Nc8afa0cd281c4cf38711df3429775a71
    7 Ncc478496d0484a9cb4616183bd2762f9
    8 Nd878baa6d72543fda091d2c97ea39484
    9 Ndd9c9687bed24737a2fa8a073c1f22de
    10 Ne6dd0f1859074a9bb08dbcbe11fc21b3
    11 Nf8d959f86df44062998271d62e077fe3
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 anzsrc-for:0605
    15 schema:author Na02508181aaa4603abe0fa7ead5ec576
    16 schema:citation sg:pub.10.1007/bf02012642
    17 sg:pub.10.1038/ismej.2009.72
    18 sg:pub.10.1038/ismej.2009.75
    19 sg:pub.10.1038/ismej.2009.8
    20 sg:pub.10.1038/ismej.2010.172
    21 sg:pub.10.1038/ismej.2010.18
    22 sg:pub.10.1038/nature03959
    23 sg:pub.10.1038/nature06810
    24 sg:pub.10.1038/nature08055
    25 sg:pub.10.1038/nbt0708-741
    26 sg:pub.10.1186/1471-2105-4-41
    27 sg:pub.10.1186/1471-2105-7-162
    28 sg:pub.10.1186/1471-2105-9-303
    29 sg:pub.10.1186/gb-2010-11-3-r25
    30 schema:datePublished 2010-09-16
    31 schema:datePublishedReg 2010-09-16
    32 schema:description The potential of metatranscriptomic sequencing to provide insights into the environmental factors that regulate microbial activities depends on how fully the sequence libraries capture community expression (that is, sample-sequencing depth and coverage depth), and the sensitivity with which expression differences between communities can be detected (that is, statistical power for hypothesis testing). In this study, we use an internal standard approach to make absolute (per liter) estimates of transcript numbers, a significant advantage over proportional estimates that can be biased by expression changes in unrelated genes. Coastal waters of the southeastern United States contain 1 × 1012 bacterioplankton mRNA molecules per liter of seawater (∼200 mRNA molecules per bacterial cell). Even for the large bacterioplankton libraries obtained in this study (∼500 000 possible protein-encoding sequences in each of two libraries after discarding rRNAs and small RNAs from >1 million 454 FLX pyrosequencing reads), sample-sequencing depth was only 0.00001%. Expression levels of 82 genes diagnostic for transformations in the marine nitrogen, phosphorus and sulfur cycles ranged from below detection (<1 × 106 transcripts per liter) for 36 genes (for example, phosphonate metabolism gene phnH, dissimilatory nitrate reductase subunit napA) to >2.7 × 109 transcripts per liter (ammonia transporter amt and ammonia monooxygenase subunit amoC). Half of the categories for which expression was detected, however, had too few copy numbers for robust statistical resolution, as would be required for comparative (experimental or time-series) expression studies. By representing whole community gene abundance and expression in absolute units (per volume or mass of environment), ‘omics’ data can be better leveraged to improve understanding of microbially mediated processes in the ocean.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Nd8efcb361e9344aa83f80280eabfca2d
    36 Nf7d3e70f21c9413f84d6f44bfdacaa4f
    37 sg:journal.1038436
    38 schema:keywords Ocean
    39 United States
    40 absolute estimates
    41 absolute units
    42 abundance
    43 activity
    44 advantages
    45 analysis
    46 approach
    47 categories
    48 changes
    49 coastal waters
    50 community
    51 community expression
    52 comparative expression studies
    53 copy number
    54 cycle
    55 data
    56 depth
    57 detection
    58 differences
    59 environmental factors
    60 estimates
    61 expression
    62 expression changes
    63 expression differences
    64 expression levels
    65 expression studies
    66 factors
    67 gene abundance
    68 genes
    69 half
    70 insights
    71 internal standard approach
    72 levels
    73 library
    74 mRNA molecules
    75 marine nitrogen
    76 metatranscriptomes
    77 metatranscriptomic sequencing
    78 microbial activity
    79 microbial metatranscriptomes
    80 molecules
    81 nitrogen
    82 number
    83 omics
    84 phosphorus
    85 potential
    86 process
    87 proportional estimates
    88 quantitative analysis
    89 resolution
    90 sample sequencing depths
    91 seawater
    92 sensitivity
    93 sequence
    94 sequencing
    95 significant advantages
    96 southeastern United States
    97 standard approach
    98 state
    99 statistical resolution
    100 study
    101 sulfur cycle
    102 transcript numbers
    103 transcripts
    104 transformation
    105 understanding
    106 units
    107 unrelated genes
    108 water
    109 schema:name Quantitative analysis of a deeply sequenced marine microbial metatranscriptome
    110 schema:pagination 461-472
    111 schema:productId N3ef9095fa43446e5b2e4dd170724e7c7
    112 N635ebca69b3341b6b4fe32c3992b6fb7
    113 N6caea6eab61d48379471517b160a1989
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013224697
    115 https://doi.org/10.1038/ismej.2010.141
    116 schema:sdDatePublished 2022-08-04T16:58
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N4f032c078d2c4f48bbde2fca0333da8e
    119 schema:url https://doi.org/10.1038/ismej.2010.141
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N12f6c8a1669242399922550739c6e56c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Genetic Variation
    125 rdf:type schema:DefinedTerm
    126 N2438bfb751314f07a8cb025f2d3cf227 rdf:first sg:person.01215610154.59
    127 rdf:rest rdf:nil
    128 N2f1525f544694ff09176f4708c1098f3 rdf:first sg:person.0772062047.83
    129 rdf:rest N2438bfb751314f07a8cb025f2d3cf227
    130 N395e4c5d87664d3496585a782b0eca37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Southeastern United States
    132 rdf:type schema:DefinedTerm
    133 N3ef9095fa43446e5b2e4dd170724e7c7 schema:name pubmed_id
    134 schema:value 20844569
    135 rdf:type schema:PropertyValue
    136 N4f032c078d2c4f48bbde2fca0333da8e schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 N5900d123c2df42fcbb429e1edcec9c5c rdf:first sg:person.01106310447.41
    139 rdf:rest N2f1525f544694ff09176f4708c1098f3
    140 N635ebca69b3341b6b4fe32c3992b6fb7 schema:name doi
    141 schema:value 10.1038/ismej.2010.141
    142 rdf:type schema:PropertyValue
    143 N646fc8b92c8e46a1a50962ad6c5df980 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Gene Dosage
    145 rdf:type schema:DefinedTerm
    146 N6caea6eab61d48379471517b160a1989 schema:name dimensions_id
    147 schema:value pub.1013224697
    148 rdf:type schema:PropertyValue
    149 N96ca8f109d054b539d9022caf5ee4a00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name RNA, Messenger
    151 rdf:type schema:DefinedTerm
    152 N9d9018e064484bfc9569c9b2782466c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Proteomics
    154 rdf:type schema:DefinedTerm
    155 Na02508181aaa4603abe0fa7ead5ec576 rdf:first sg:person.01230344374.63
    156 rdf:rest N5900d123c2df42fcbb429e1edcec9c5c
    157 Nc8afa0cd281c4cf38711df3429775a71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Transcriptome
    159 rdf:type schema:DefinedTerm
    160 Ncc478496d0484a9cb4616183bd2762f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Gene Expression Regulation, Bacterial
    162 rdf:type schema:DefinedTerm
    163 Nd878baa6d72543fda091d2c97ea39484 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Genomic Library
    165 rdf:type schema:DefinedTerm
    166 Nd8efcb361e9344aa83f80280eabfca2d schema:volumeNumber 5
    167 rdf:type schema:PublicationVolume
    168 Ndd9c9687bed24737a2fa8a073c1f22de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Seawater
    170 rdf:type schema:DefinedTerm
    171 Ne6dd0f1859074a9bb08dbcbe11fc21b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Sequence Analysis, DNA
    173 rdf:type schema:DefinedTerm
    174 Nf7d3e70f21c9413f84d6f44bfdacaa4f schema:issueNumber 3
    175 rdf:type schema:PublicationIssue
    176 Nf8d959f86df44062998271d62e077fe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Bacteria
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Biological Sciences
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Genetics
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Microbiology
    187 rdf:type schema:DefinedTerm
    188 sg:grant.2994753 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2010.141
    189 rdf:type schema:MonetaryGrant
    190 sg:grant.3076450 http://pending.schema.org/fundedItem sg:pub.10.1038/ismej.2010.141
    191 rdf:type schema:MonetaryGrant
    192 sg:journal.1038436 schema:issn 1751-7362
    193 1751-7370
    194 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
    195 schema:publisher Springer Nature
    196 rdf:type schema:Periodical
    197 sg:person.01106310447.41 schema:affiliation grid-institutes:grid.213876.9
    198 schema:familyName Sharma
    199 schema:givenName Shalabh
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106310447.41
    201 rdf:type schema:Person
    202 sg:person.01215610154.59 schema:affiliation grid-institutes:grid.213876.9
    203 schema:familyName Moran
    204 schema:givenName Mary Ann
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215610154.59
    206 rdf:type schema:Person
    207 sg:person.01230344374.63 schema:affiliation grid-institutes:grid.213876.9
    208 schema:familyName Gifford
    209 schema:givenName Scott M
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230344374.63
    211 rdf:type schema:Person
    212 sg:person.0772062047.83 schema:affiliation grid-institutes:grid.213876.9
    213 schema:familyName Rinta-Kanto
    214 schema:givenName Johanna M
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772062047.83
    216 rdf:type schema:Person
    217 sg:pub.10.1007/bf02012642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033018684
    218 https://doi.org/10.1007/bf02012642
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ismej.2009.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938739
    221 https://doi.org/10.1038/ismej.2009.72
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ismej.2009.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005410968
    224 https://doi.org/10.1038/ismej.2009.75
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ismej.2009.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024002450
    227 https://doi.org/10.1038/ismej.2009.8
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ismej.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014275780
    230 https://doi.org/10.1038/ismej.2010.172
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/ismej.2010.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038520885
    233 https://doi.org/10.1038/ismej.2010.18
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
    236 https://doi.org/10.1038/nature03959
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature06810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047805213
    239 https://doi.org/10.1038/nature06810
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature08055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029921262
    242 https://doi.org/10.1038/nature08055
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt0708-741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018566556
    245 https://doi.org/10.1038/nbt0708-741
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/1471-2105-4-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163036
    248 https://doi.org/10.1186/1471-2105-4-41
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/1471-2105-7-162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044943589
    251 https://doi.org/10.1186/1471-2105-7-162
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/1471-2105-9-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041933952
    254 https://doi.org/10.1186/1471-2105-9-303
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
    257 https://doi.org/10.1186/gb-2010-11-3-r25
    258 rdf:type schema:CreativeWork
    259 grid-institutes:grid.213876.9 schema:alternateName Department of Marine Sciences, University of Georgia, Athens, GA, USA
    260 schema:name Department of Marine Sciences, University of Georgia, Athens, GA, USA
    261 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...