Evaluating different approaches that test whether microbial communities have the same structure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-03

AUTHORS

Patrick D Schloss

ABSTRACT

As microbial ecology investigations have progressed from descriptive characterizations of a community to hypothesis-driven ecological research, a number of different statistical techniques have been developed to describe and compare the structure of microbial communities. Thus far, these methods have only been evaluated using 16S rRNA gene sequence data obtained from incomplete characterizations of microbial communities. In this investigation, simulations were designed to test the statistical power of different methods to differentiate between communities with known memberships and structures. These simulations revealed three important results that affect how the results of the tests are interpreted. First, integral-LIBSHUFF, TreeClimber, UniFrac, analysis of molecular variance (AMOVA) and homogeneity of molecular variance (HOMOVA) compare the structure of communities and not just their memberships. Second, integral-LIBSHUFF is unable to detect cases when one community structure is a subset of another. Third, AMOVA determines whether the genetic diversity within two or more communities is greater than their pooled genetic diversity, and HOMOVA determines whether the amount of genetic diversity in each community is significantly different. integral-LIBSHUFF, TreeClimber and UniFrac lump these and other factors together when performing their analysis making it difficult to discern the nature of the differences that are detected between communities. These findings demonstrate that when correctly employed, the current statistical toolbox has the ability to address specific ecological questions concerning the differences between microbial communities. More... »

PAGES

ismej20085

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ismej.2008.5

DOI

http://dx.doi.org/10.1038/ismej.2008.5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029709848

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18239608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Amherst", 
          "id": "https://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Microbiology, University of Massachusetts\u2014Amherst, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schloss", 
        "givenName": "Patrick D", 
        "id": "sg:person.01252252567.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252252567.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.95.12.6578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2007.03326.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008095052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1110591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008274652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.3.1501-1506.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008400827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00358-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013422473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1420-9101.1996.9020153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.9.4374-4376.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.8.3673-3682.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023008403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.72.4.2379-2384.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023628939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024447086", 
          "https://doi.org/10.1038/nature03073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024447086", 
          "https://doi.org/10.1038/nature03073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01996-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025834307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027602780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029901284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02656-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030101362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.9.5485-5492.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031053440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.08.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033455569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034771775", 
          "https://doi.org/10.1186/1471-2105-7-371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034771775", 
          "https://doi.org/10.1186/1471-2105-7-371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504978102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038909005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504978102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038909005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00812-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039641875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0020092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040650196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.12.8228-8235.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042157769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00474-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043689786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6941.2006.00260.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045154500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0611525104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050913510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706625104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051890432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1442-9993.2001.01070.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056740218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2409726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069918630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077181267", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03", 
    "datePublishedReg": "2008-03-01", 
    "description": "As microbial ecology investigations have progressed from descriptive characterizations of a community to hypothesis-driven ecological research, a number of different statistical techniques have been developed to describe and compare the structure of microbial communities. Thus far, these methods have only been evaluated using 16S rRNA gene sequence data obtained from incomplete characterizations of microbial communities. In this investigation, simulations were designed to test the statistical power of different methods to differentiate between communities with known memberships and structures. These simulations revealed three important results that affect how the results of the tests are interpreted. First, integral-LIBSHUFF, TreeClimber, UniFrac, analysis of molecular variance (AMOVA) and homogeneity of molecular variance (HOMOVA) compare the structure of communities and not just their memberships. Second, integral-LIBSHUFF is unable to detect cases when one community structure is a subset of another. Third, AMOVA determines whether the genetic diversity within two or more communities is greater than their pooled genetic diversity, and HOMOVA determines whether the amount of genetic diversity in each community is significantly different. integral-LIBSHUFF, TreeClimber and UniFrac lump these and other factors together when performing their analysis making it difficult to discern the nature of the differences that are detected between communities. These findings demonstrate that when correctly employed, the current statistical toolbox has the ability to address specific ecological questions concerning the differences between microbial communities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ismej.2008.5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Evaluating different approaches that test whether microbial communities have the same structure", 
    "pagination": "ismej20085", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d88318fa7d2c03dc0f9e5066f79eb980433c80e1c9b07247f92e5e4501ec33e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18239608"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301086"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ismej.2008.5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029709848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ismej.2008.5", 
      "https://app.dimensions.ai/details/publication/pub.1029709848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ismej20085"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ismej.2008.5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ismej.2008.5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ismej.2008.5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ismej.2008.5'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      66 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ismej.2008.5 schema:about N652d65b4ad0a4d2c9b9dfb829f8711d3
2 N9687b66ee4be409d82fd18e20ff24c07
3 Nad4ca5fbbfc24aea96cec40d13d19811
4 Nbc644d5150704753a9bdc6304a9c5747
5 Nc8caefd1300144d9b800bd92e11c2e69
6 Nd16846b90c5c4fb8ae715615644052d5
7 Ne4026c6185df4e2aa73d31c973290d03
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N2b67b3495daa41aaa84290a7e47cedc6
11 schema:citation sg:pub.10.1038/nature03073
12 sg:pub.10.1038/nature05414
13 sg:pub.10.1186/1471-2105-7-371
14 https://app.dimensions.ai/details/publication/pub.1077181267
15 https://doi.org/10.1016/j.cell.2006.08.043
16 https://doi.org/10.1046/j.1420-9101.1996.9020153.x
17 https://doi.org/10.1046/j.1442-9993.2001.01070.x
18 https://doi.org/10.1073/pnas.0504978102
19 https://doi.org/10.1073/pnas.0611525104
20 https://doi.org/10.1073/pnas.0706625104
21 https://doi.org/10.1073/pnas.95.12.6578
22 https://doi.org/10.1093/nar/gkl889
23 https://doi.org/10.1093/nar/gkm541
24 https://doi.org/10.1111/j.1365-294x.2007.03326.x
25 https://doi.org/10.1111/j.1574-6941.2006.00260.x
26 https://doi.org/10.1126/science.1110591
27 https://doi.org/10.1128/aem.00358-07
28 https://doi.org/10.1128/aem.00474-06
29 https://doi.org/10.1128/aem.00812-07
30 https://doi.org/10.1128/aem.01996-06
31 https://doi.org/10.1128/aem.02656-06
32 https://doi.org/10.1128/aem.67.9.4374-4376.2001
33 https://doi.org/10.1128/aem.68.8.3673-3682.2002
34 https://doi.org/10.1128/aem.70.9.5485-5492.2004
35 https://doi.org/10.1128/aem.71.12.8228-8235.2005
36 https://doi.org/10.1128/aem.71.3.1501-1506.2005
37 https://doi.org/10.1128/aem.72.4.2379-2384.2006
38 https://doi.org/10.1371/journal.pcbi.0020092
39 https://doi.org/10.2307/2409726
40 https://doi.org/10.2307/2412116
41 schema:datePublished 2008-03
42 schema:datePublishedReg 2008-03-01
43 schema:description As microbial ecology investigations have progressed from descriptive characterizations of a community to hypothesis-driven ecological research, a number of different statistical techniques have been developed to describe and compare the structure of microbial communities. Thus far, these methods have only been evaluated using 16S rRNA gene sequence data obtained from incomplete characterizations of microbial communities. In this investigation, simulations were designed to test the statistical power of different methods to differentiate between communities with known memberships and structures. These simulations revealed three important results that affect how the results of the tests are interpreted. First, integral-LIBSHUFF, TreeClimber, UniFrac, analysis of molecular variance (AMOVA) and homogeneity of molecular variance (HOMOVA) compare the structure of communities and not just their memberships. Second, integral-LIBSHUFF is unable to detect cases when one community structure is a subset of another. Third, AMOVA determines whether the genetic diversity within two or more communities is greater than their pooled genetic diversity, and HOMOVA determines whether the amount of genetic diversity in each community is significantly different. integral-LIBSHUFF, TreeClimber and UniFrac lump these and other factors together when performing their analysis making it difficult to discern the nature of the differences that are detected between communities. These findings demonstrate that when correctly employed, the current statistical toolbox has the ability to address specific ecological questions concerning the differences between microbial communities.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Nd6a42d5f997c4a499058c52af69a87b4
48 Ne62e34c112c2431786f762f10eca5163
49 sg:journal.1038436
50 schema:name Evaluating different approaches that test whether microbial communities have the same structure
51 schema:pagination ismej20085
52 schema:productId N227444dba7454b79ae6cab59c62103e8
53 N2dfbd4148e134fb4a45e88144731d539
54 N7b0d85a0d6604a79890fd53786176b9a
55 Nc5e5d53bf0fd403cbfd372bd91e8a6f7
56 Nfb159f727b084f4eaa012f28d78c3dca
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029709848
58 https://doi.org/10.1038/ismej.2008.5
59 schema:sdDatePublished 2019-04-10T18:56
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nce8172f0d100444388864c086e78efab
62 schema:url http://www.nature.com/articles/ismej20085
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N227444dba7454b79ae6cab59c62103e8 schema:name nlm_unique_id
67 schema:value 101301086
68 rdf:type schema:PropertyValue
69 N2b67b3495daa41aaa84290a7e47cedc6 rdf:first sg:person.01252252567.41
70 rdf:rest rdf:nil
71 N2dfbd4148e134fb4a45e88144731d539 schema:name pubmed_id
72 schema:value 18239608
73 rdf:type schema:PropertyValue
74 N652d65b4ad0a4d2c9b9dfb829f8711d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Monte Carlo Method
76 rdf:type schema:DefinedTerm
77 N7b0d85a0d6604a79890fd53786176b9a schema:name dimensions_id
78 schema:value pub.1029709848
79 rdf:type schema:PropertyValue
80 N9687b66ee4be409d82fd18e20ff24c07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Environmental Microbiology
82 rdf:type schema:DefinedTerm
83 Nad4ca5fbbfc24aea96cec40d13d19811 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Cluster Analysis
85 rdf:type schema:DefinedTerm
86 Nbc644d5150704753a9bdc6304a9c5747 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Computational Biology
88 rdf:type schema:DefinedTerm
89 Nc5e5d53bf0fd403cbfd372bd91e8a6f7 schema:name readcube_id
90 schema:value 8d88318fa7d2c03dc0f9e5066f79eb980433c80e1c9b07247f92e5e4501ec33e
91 rdf:type schema:PropertyValue
92 Nc8caefd1300144d9b800bd92e11c2e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name RNA, Ribosomal, 16S
94 rdf:type schema:DefinedTerm
95 Nce8172f0d100444388864c086e78efab schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nd16846b90c5c4fb8ae715615644052d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Phylogeny
99 rdf:type schema:DefinedTerm
100 Nd6a42d5f997c4a499058c52af69a87b4 schema:volumeNumber 2
101 rdf:type schema:PublicationVolume
102 Ne4026c6185df4e2aa73d31c973290d03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Ecosystem
104 rdf:type schema:DefinedTerm
105 Ne62e34c112c2431786f762f10eca5163 schema:issueNumber 3
106 rdf:type schema:PublicationIssue
107 Nfb159f727b084f4eaa012f28d78c3dca schema:name doi
108 schema:value 10.1038/ismej.2008.5
109 rdf:type schema:PropertyValue
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
114 schema:name Genetics
115 rdf:type schema:DefinedTerm
116 sg:journal.1038436 schema:issn 1751-7362
117 1751-7370
118 schema:name The ISME Journal
119 rdf:type schema:Periodical
120 sg:person.01252252567.41 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
121 schema:familyName Schloss
122 schema:givenName Patrick D
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252252567.41
124 rdf:type schema:Person
125 sg:pub.10.1038/nature03073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024447086
126 https://doi.org/10.1038/nature03073
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature05414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023893418
129 https://doi.org/10.1038/nature05414
130 rdf:type schema:CreativeWork
131 sg:pub.10.1186/1471-2105-7-371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034771775
132 https://doi.org/10.1186/1471-2105-7-371
133 rdf:type schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1077181267 schema:CreativeWork
135 https://doi.org/10.1016/j.cell.2006.08.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033455569
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1046/j.1420-9101.1996.9020153.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017573133
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1046/j.1442-9993.2001.01070.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056740218
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.0504978102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038909005
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.0611525104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050913510
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.0706625104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051890432
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1073/pnas.95.12.6578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003821328
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/nar/gkl889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029901284
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/nar/gkm541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602780
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/j.1365-294x.2007.03326.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008095052
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.1574-6941.2006.00260.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045154500
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1110591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008274652
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1128/aem.00358-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013422473
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1128/aem.00474-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043689786
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1128/aem.00812-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039641875
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1128/aem.01996-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025834307
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1128/aem.02656-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030101362
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1128/aem.67.9.4374-4376.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080760
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1128/aem.68.8.3673-3682.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023008403
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1128/aem.70.9.5485-5492.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031053440
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1128/aem.71.12.8228-8235.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042157769
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1128/aem.71.3.1501-1506.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008400827
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1128/aem.72.4.2379-2384.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023628939
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1371/journal.pcbi.0020092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040650196
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2307/2409726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069918630
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2307/2412116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920601
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.266683.f schema:alternateName University of Massachusetts Amherst
188 schema:name Department of Microbiology, University of Massachusetts—Amherst, Amherst, MA, USA
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...