Sex differences in the association of cord blood insulin with subcutaneous adipose tissue in neonates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09-21

AUTHORS

M Eder, B Csapo, C Wadsack, J Haas, P M Catalano, G Desoye, M N M van Poppel

ABSTRACT

Background:Excessive fat accumulation characterizes the over-nourished fetus in maternal diabetes and obesity with fetal insulin regarded as a primary driver. This study tested whether fetal insulin is related to subcutaneous adipose tissue (SAT) thickness at different body sites in neonates, and whether sites respond differentially to insulin. In addition, sex differences were assessed.Methods:Cord blood insulin was measured for 414 neonates. After birth, SAT thickness was measured at 15 body sites using a validated device, a lipometer, that measures back-scattered light intensities corresponding to SAT. Associations between fetal insulin and SAT were assessed in linear regression models, adjusted for gestational age and birth weight, for males and females separately.Results:No sex differences in insulin levels or total SAT thickness were found. In males, SAT thickness at most body sites was significantly correlated with insulin, with strongest associations between insulin and SAT on neck (beta 0.23, 95% CI 0.05; 0.41; P=0.01) and upper abdomen (beta 0.18, 95% CI 0.01; 0.36; P=0.04). In females, insulin was only associated with hip SAT thickness (beta 0.22, 95% CI 0.06; 0.39; P=0.01). Total SAT thickness was correlated with insulin in males (beta 0.03, 95% CI 0.01; 0.04; P=0.003), but not in females (beta 0.01, 95% CI −0.01; 0.02; P=0.38).Conclusions:Fat deposition in female neonates seems less affected by insulin as compared to males. This may reflect lower insulin sensitivity in females, or may be accounted for by other metabolic/endocrine factors overriding the association. More... »

PAGES

538-542

References to SciGraph publications

  • 2003-07-09. Relationships between bioelectric impedance and subcutaneous adipose tissue thickness measured by LIPOMETER and skinfold calipers in children in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 1992-03. Islet amyloid polypeptide immunoreactivity in the human fetal pancreas in DIABETOLOGIA
  • 2015-02-11. New genetic loci link adipose and insulin biology to body fat distribution in NATURE
  • 2008-05-04. Dynamics of fat cell turnover in humans in NATURE
  • 2006-06-27. The gender insulin hypothesis: why girls are born lighter than boys, and the implications for insulin resistance in INTERNATIONAL JOURNAL OF OBESITY
  • 2012-03-31. Gestational diabetes and pregnancy outcomes - a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria in BMC PREGNANCY AND CHILDBIRTH
  • 2011-11. Fat and Fat-Free Mass at Birth: Air Displacement Plethysmography Measurements on 350 Ethiopian Newborns in PEDIATRIC RESEARCH
  • 2014-01-01. First trimester maternal BMI is a positive predictor of cord blood c-peptide levels while maternal visfatin levels is a negative predictor of birth weight in HORMONES
  • 2015-04-29. Visceral abdominal fat accumulation predicts the conversion of metabolically healthy obese subjects to an unhealthy phenotype in INTERNATIONAL JOURNAL OF OBESITY
  • 1992-01. Insulin binding to trophoblast plasma membranes and placental glycogen content in well-controlled gestational diabetic women treated with diet or insulin, in well-controlled overt diabetic patients and in healthy control subjects in DIABETOLOGIA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ijo.2015.185

    DOI

    http://dx.doi.org/10.1038/ijo.2015.185

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011826181

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26388350


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Austria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Composition", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fetal Blood", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hyperglycemia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant, Newborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Insulin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mothers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pregnancy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pregnancy Complications", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prenatal Exposure Delayed Effects", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sex Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Subcutaneous Fat", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.11598.34", 
              "name": [
                "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eder", 
            "givenName": "M", 
            "id": "sg:person.0677030356.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677030356.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.11598.34", 
              "name": [
                "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Csapo", 
            "givenName": "B", 
            "id": "sg:person.01232227747.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232227747.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.11598.34", 
              "name": [
                "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wadsack", 
            "givenName": "C", 
            "id": "sg:person.0773315043.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773315043.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.11598.34", 
              "name": [
                "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haas", 
            "givenName": "J", 
            "id": "sg:person.01004174363.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004174363.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Reproductive Biology, Case Western Reserve University, MetroHealth, Cleveland, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.67105.35", 
              "name": [
                "Department of Reproductive Biology, Case Western Reserve University, MetroHealth, Cleveland, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Catalano", 
            "givenName": "P M", 
            "id": "sg:person.07512067462.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512067462.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.11598.34", 
              "name": [
                "Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Desoye", 
            "givenName": "G", 
            "id": "sg:person.0753055723.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753055723.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Sport Science, University of Graz, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "Department of Public and Occupational Health, EMGO+ Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands", 
                "Institute of Sport Science, University of Graz, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Poppel", 
            "givenName": "M N M", 
            "id": "sg:person.012364156354.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012364156354.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03401324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078894736", 
              "https://doi.org/10.1007/bf03401324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2015.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035093068", 
              "https://doi.org/10.1038/ijo.2015.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00421-003-0878-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035957964", 
              "https://doi.org/10.1007/s00421-003-0878-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00400929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038019265", 
              "https://doi.org/10.1007/bf00400929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047374084", 
              "https://doi.org/10.1038/nature06902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1203/pdr.0b013e31822d7470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021589722", 
              "https://doi.org/10.1203/pdr.0b013e31822d7470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019263071", 
              "https://doi.org/10.1038/nature14132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.ijo.0803317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015098546", 
              "https://doi.org/10.1038/sj.ijo.0803317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00400851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001068953", 
              "https://doi.org/10.1007/bf00400851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2393-12-23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011753842", 
              "https://doi.org/10.1186/1471-2393-12-23"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-09-21", 
        "datePublishedReg": "2015-09-21", 
        "description": "Background:Excessive fat accumulation characterizes the over-nourished fetus in maternal diabetes and obesity with fetal insulin regarded as a primary driver. This study tested whether fetal insulin is related to subcutaneous adipose tissue (SAT) thickness at different body sites in neonates, and whether sites respond differentially to insulin. In addition, sex differences were assessed.Methods:Cord blood insulin was measured for 414 neonates. After birth, SAT thickness was measured at 15 body sites using a validated device, a lipometer, that measures back-scattered light intensities corresponding to SAT. Associations between fetal insulin and SAT were assessed in linear regression models, adjusted for gestational age and birth weight, for males and females separately.Results:No sex differences in insulin levels or total SAT thickness were found. In males, SAT thickness at most body sites was significantly correlated with insulin, with strongest associations between insulin and SAT on neck (beta 0.23, 95% CI 0.05; 0.41; P=0.01) and upper abdomen (beta 0.18, 95% CI 0.01; 0.36; P=0.04). In females, insulin was only associated with hip SAT thickness (beta 0.22, 95% CI 0.06; 0.39; P=0.01). Total SAT thickness was correlated with insulin in males (beta 0.03, 95% CI 0.01; 0.04; P=0.003), but not in females (beta 0.01, 95% CI \u22120.01; 0.02; P=0.38).Conclusions:Fat deposition in female neonates seems less affected by insulin as compared to males. This may reflect lower insulin sensitivity in females, or may be accounted for by other metabolic/endocrine factors overriding the association.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ijo.2015.185", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1035838", 
            "issn": [
              "0307-0565", 
              "1476-5497"
            ], 
            "name": "International Journal of Obesity", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "cord blood insulin", 
          "fetal insulin", 
          "SAT thickness", 
          "body sites", 
          "blood insulin", 
          "sex differences", 
          "excessive fat accumulation", 
          "lower insulin sensitivity", 
          "adipose tissue thickness", 
          "subcutaneous adipose tissue", 
          "subcutaneous adipose tissue thickness", 
          "different body sites", 
          "most body sites", 
          "maternal diabetes", 
          "gestational age", 
          "insulin levels", 
          "female neonate", 
          "birth weight", 
          "upper abdomen", 
          "insulin sensitivity", 
          "fat accumulation", 
          "endocrine factors", 
          "adipose tissue", 
          "neonates", 
          "insulin", 
          "strong association", 
          "fat deposition", 
          "tissue thickness", 
          "linear regression models", 
          "males", 
          "association", 
          "females", 
          "regression models", 
          "obesity", 
          "diabetes", 
          "fetuses", 
          "abdomen", 
          "differences", 
          "neck", 
          "birth", 
          "Lipometer", 
          "age", 
          "tissue", 
          "sites", 
          "factors", 
          "levels", 
          "weight", 
          "study", 
          "accumulation", 
          "sensitivity", 
          "primary driver", 
          "addition", 
          "SAT", 
          "thickness", 
          "intensity", 
          "model", 
          "deposition", 
          "drivers", 
          "devices", 
          "light intensity"
        ], 
        "name": "Sex differences in the association of cord blood insulin with subcutaneous adipose tissue in neonates", 
        "pagination": "538-542", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011826181"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ijo.2015.185"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26388350"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ijo.2015.185", 
          "https://app.dimensions.ai/details/publication/pub.1011826181"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_656.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ijo.2015.185"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ijo.2015.185'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ijo.2015.185'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ijo.2015.185'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ijo.2015.185'


     

    This table displays all metadata directly associated to this object as RDF triples.

    270 TRIPLES      21 PREDICATES      110 URIs      92 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ijo.2015.185 schema:about N0287bc1df775485c9a8e00bf8cdc7c39
    2 N10e7f48e22e447f888a3cd2ca895b47f
    3 N3b42346b1bd74747ae2a1cb5e6f625fc
    4 N4f3a8c509f7a45239e07bdff874a22b9
    5 N6986ab0eeba9489b8ed306789961fb70
    6 N7863d01702874984beece8c63757ad58
    7 N9b910b2481e04989b3eb4cdef9ba3da1
    8 Nb15a1f78c3d84c82a8d324b7bba669d7
    9 Nc14e85c03ddf4cecb0f09925a252241d
    10 Ncda6572edbf44b90ab4d0dda9337189f
    11 Ndaee82980e174b618f7ca2492c100de9
    12 Ne8b9386e4efb40e984703d92e99de554
    13 Ne903f7eb2cf04f00a28950761609c174
    14 Nf4012eeec85a4b938104cdbf0c5e295c
    15 Nf5bfb5f8faff4842b77f01aec1451adb
    16 anzsrc-for:11
    17 anzsrc-for:1103
    18 schema:author N2a03abe891c044adb01b0d49a8c7f473
    19 schema:citation sg:pub.10.1007/bf00400851
    20 sg:pub.10.1007/bf00400929
    21 sg:pub.10.1007/bf03401324
    22 sg:pub.10.1007/s00421-003-0878-3
    23 sg:pub.10.1038/ijo.2015.75
    24 sg:pub.10.1038/nature06902
    25 sg:pub.10.1038/nature14132
    26 sg:pub.10.1038/sj.ijo.0803317
    27 sg:pub.10.1186/1471-2393-12-23
    28 sg:pub.10.1203/pdr.0b013e31822d7470
    29 schema:datePublished 2015-09-21
    30 schema:datePublishedReg 2015-09-21
    31 schema:description Background:Excessive fat accumulation characterizes the over-nourished fetus in maternal diabetes and obesity with fetal insulin regarded as a primary driver. This study tested whether fetal insulin is related to subcutaneous adipose tissue (SAT) thickness at different body sites in neonates, and whether sites respond differentially to insulin. In addition, sex differences were assessed.Methods:Cord blood insulin was measured for 414 neonates. After birth, SAT thickness was measured at 15 body sites using a validated device, a lipometer, that measures back-scattered light intensities corresponding to SAT. Associations between fetal insulin and SAT were assessed in linear regression models, adjusted for gestational age and birth weight, for males and females separately.Results:No sex differences in insulin levels or total SAT thickness were found. In males, SAT thickness at most body sites was significantly correlated with insulin, with strongest associations between insulin and SAT on neck (beta 0.23, 95% CI 0.05; 0.41; P=0.01) and upper abdomen (beta 0.18, 95% CI 0.01; 0.36; P=0.04). In females, insulin was only associated with hip SAT thickness (beta 0.22, 95% CI 0.06; 0.39; P=0.01). Total SAT thickness was correlated with insulin in males (beta 0.03, 95% CI 0.01; 0.04; P=0.003), but not in females (beta 0.01, 95% CI −0.01; 0.02; P=0.38).Conclusions:Fat deposition in female neonates seems less affected by insulin as compared to males. This may reflect lower insulin sensitivity in females, or may be accounted for by other metabolic/endocrine factors overriding the association.
    32 schema:genre article
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N977964d82b5d436faaa66db36c636f4a
    35 Ndf4f4a7d506a41f3a4426f1703324b3b
    36 sg:journal.1035838
    37 schema:keywords Lipometer
    38 SAT
    39 SAT thickness
    40 abdomen
    41 accumulation
    42 addition
    43 adipose tissue
    44 adipose tissue thickness
    45 age
    46 association
    47 birth
    48 birth weight
    49 blood insulin
    50 body sites
    51 cord blood insulin
    52 deposition
    53 devices
    54 diabetes
    55 differences
    56 different body sites
    57 drivers
    58 endocrine factors
    59 excessive fat accumulation
    60 factors
    61 fat accumulation
    62 fat deposition
    63 female neonate
    64 females
    65 fetal insulin
    66 fetuses
    67 gestational age
    68 insulin
    69 insulin levels
    70 insulin sensitivity
    71 intensity
    72 levels
    73 light intensity
    74 linear regression models
    75 lower insulin sensitivity
    76 males
    77 maternal diabetes
    78 model
    79 most body sites
    80 neck
    81 neonates
    82 obesity
    83 primary driver
    84 regression models
    85 sensitivity
    86 sex differences
    87 sites
    88 strong association
    89 study
    90 subcutaneous adipose tissue
    91 subcutaneous adipose tissue thickness
    92 thickness
    93 tissue
    94 tissue thickness
    95 upper abdomen
    96 weight
    97 schema:name Sex differences in the association of cord blood insulin with subcutaneous adipose tissue in neonates
    98 schema:pagination 538-542
    99 schema:productId N07fe5e08e5e448da951cb56ffbfc004e
    100 Nb3025e85e8714b7bbdc4ceb318c4ff0c
    101 Ndba0e951d53449fa86a38fead5cd2dde
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011826181
    103 https://doi.org/10.1038/ijo.2015.185
    104 schema:sdDatePublished 2022-09-02T15:57
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N2d58790be49b417cb146594f6247b706
    107 schema:url https://doi.org/10.1038/ijo.2015.185
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N0287bc1df775485c9a8e00bf8cdc7c39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Prenatal Exposure Delayed Effects
    113 rdf:type schema:DefinedTerm
    114 N07fe5e08e5e448da951cb56ffbfc004e schema:name pubmed_id
    115 schema:value 26388350
    116 rdf:type schema:PropertyValue
    117 N10e7f48e22e447f888a3cd2ca895b47f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Fetal Blood
    119 rdf:type schema:DefinedTerm
    120 N2a03abe891c044adb01b0d49a8c7f473 rdf:first sg:person.0677030356.15
    121 rdf:rest N9cfb74ab51fb4a60845e2b526563b514
    122 N2d58790be49b417cb146594f6247b706 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 N3b42346b1bd74747ae2a1cb5e6f625fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Female
    126 rdf:type schema:DefinedTerm
    127 N4f3a8c509f7a45239e07bdff874a22b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Mothers
    129 rdf:type schema:DefinedTerm
    130 N6986ab0eeba9489b8ed306789961fb70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Sex Factors
    132 rdf:type schema:DefinedTerm
    133 N7863d01702874984beece8c63757ad58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Male
    135 rdf:type schema:DefinedTerm
    136 N813c57afd663414d9a359947553674d4 rdf:first sg:person.0753055723.63
    137 rdf:rest Nc0a95f8726654a7887ad1f6645687598
    138 N977964d82b5d436faaa66db36c636f4a schema:volumeNumber 40
    139 rdf:type schema:PublicationVolume
    140 N9b910b2481e04989b3eb4cdef9ba3da1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Pregnancy
    142 rdf:type schema:DefinedTerm
    143 N9cfb74ab51fb4a60845e2b526563b514 rdf:first sg:person.01232227747.55
    144 rdf:rest Nd8506cdc0f2449529de954f1f6537888
    145 Nb15a1f78c3d84c82a8d324b7bba669d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Humans
    147 rdf:type schema:DefinedTerm
    148 Nb3025e85e8714b7bbdc4ceb318c4ff0c schema:name dimensions_id
    149 schema:value pub.1011826181
    150 rdf:type schema:PropertyValue
    151 Nc0a95f8726654a7887ad1f6645687598 rdf:first sg:person.012364156354.90
    152 rdf:rest rdf:nil
    153 Nc14e85c03ddf4cecb0f09925a252241d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Austria
    155 rdf:type schema:DefinedTerm
    156 Ncda6572edbf44b90ab4d0dda9337189f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Pregnancy Complications
    158 rdf:type schema:DefinedTerm
    159 Nd25e80bd92bf425ba78c84c88e437b98 rdf:first sg:person.07512067462.33
    160 rdf:rest N813c57afd663414d9a359947553674d4
    161 Nd8506cdc0f2449529de954f1f6537888 rdf:first sg:person.0773315043.53
    162 rdf:rest Ndad30ab82c594012969320177b4b978f
    163 Ndad30ab82c594012969320177b4b978f rdf:first sg:person.01004174363.29
    164 rdf:rest Nd25e80bd92bf425ba78c84c88e437b98
    165 Ndaee82980e174b618f7ca2492c100de9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Hyperglycemia
    167 rdf:type schema:DefinedTerm
    168 Ndba0e951d53449fa86a38fead5cd2dde schema:name doi
    169 schema:value 10.1038/ijo.2015.185
    170 rdf:type schema:PropertyValue
    171 Ndf4f4a7d506a41f3a4426f1703324b3b schema:issueNumber 3
    172 rdf:type schema:PublicationIssue
    173 Ne8b9386e4efb40e984703d92e99de554 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Insulin
    175 rdf:type schema:DefinedTerm
    176 Ne903f7eb2cf04f00a28950761609c174 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Infant, Newborn
    178 rdf:type schema:DefinedTerm
    179 Nf4012eeec85a4b938104cdbf0c5e295c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Body Composition
    181 rdf:type schema:DefinedTerm
    182 Nf5bfb5f8faff4842b77f01aec1451adb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Subcutaneous Fat
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Medical and Health Sciences
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Clinical Sciences
    190 rdf:type schema:DefinedTerm
    191 sg:journal.1035838 schema:issn 0307-0565
    192 1476-5497
    193 schema:name International Journal of Obesity
    194 schema:publisher Springer Nature
    195 rdf:type schema:Periodical
    196 sg:person.01004174363.29 schema:affiliation grid-institutes:grid.11598.34
    197 schema:familyName Haas
    198 schema:givenName J
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004174363.29
    200 rdf:type schema:Person
    201 sg:person.01232227747.55 schema:affiliation grid-institutes:grid.11598.34
    202 schema:familyName Csapo
    203 schema:givenName B
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232227747.55
    205 rdf:type schema:Person
    206 sg:person.012364156354.90 schema:affiliation grid-institutes:grid.5110.5
    207 schema:familyName van Poppel
    208 schema:givenName M N M
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012364156354.90
    210 rdf:type schema:Person
    211 sg:person.0677030356.15 schema:affiliation grid-institutes:grid.11598.34
    212 schema:familyName Eder
    213 schema:givenName M
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677030356.15
    215 rdf:type schema:Person
    216 sg:person.07512067462.33 schema:affiliation grid-institutes:grid.67105.35
    217 schema:familyName Catalano
    218 schema:givenName P M
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512067462.33
    220 rdf:type schema:Person
    221 sg:person.0753055723.63 schema:affiliation grid-institutes:grid.11598.34
    222 schema:familyName Desoye
    223 schema:givenName G
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753055723.63
    225 rdf:type schema:Person
    226 sg:person.0773315043.53 schema:affiliation grid-institutes:grid.11598.34
    227 schema:familyName Wadsack
    228 schema:givenName C
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773315043.53
    230 rdf:type schema:Person
    231 sg:pub.10.1007/bf00400851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001068953
    232 https://doi.org/10.1007/bf00400851
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/bf00400929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038019265
    235 https://doi.org/10.1007/bf00400929
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/bf03401324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078894736
    238 https://doi.org/10.1007/bf03401324
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00421-003-0878-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035957964
    241 https://doi.org/10.1007/s00421-003-0878-3
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ijo.2015.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035093068
    244 https://doi.org/10.1038/ijo.2015.75
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nature06902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047374084
    247 https://doi.org/10.1038/nature06902
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nature14132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019263071
    250 https://doi.org/10.1038/nature14132
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/sj.ijo.0803317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015098546
    253 https://doi.org/10.1038/sj.ijo.0803317
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/1471-2393-12-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011753842
    256 https://doi.org/10.1186/1471-2393-12-23
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1203/pdr.0b013e31822d7470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021589722
    259 https://doi.org/10.1203/pdr.0b013e31822d7470
    260 rdf:type schema:CreativeWork
    261 grid-institutes:grid.11598.34 schema:alternateName Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
    262 schema:name Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
    263 rdf:type schema:Organization
    264 grid-institutes:grid.5110.5 schema:alternateName Institute of Sport Science, University of Graz, Graz, Austria
    265 schema:name Department of Public and Occupational Health, EMGO+ Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
    266 Institute of Sport Science, University of Graz, Graz, Austria
    267 rdf:type schema:Organization
    268 grid-institutes:grid.67105.35 schema:alternateName Department of Reproductive Biology, Case Western Reserve University, MetroHealth, Cleveland, OH, USA
    269 schema:name Department of Reproductive Biology, Case Western Reserve University, MetroHealth, Cleveland, OH, USA
    270 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...