‘Traffic-light’ nutrition labelling and ‘junk-food’ tax: a modelled comparison of cost-effectiveness for obesity prevention View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-07

AUTHORS

G Sacks, J L Veerman, M Moodie, B Swinburn

ABSTRACT

INTRODUCTION: Cost-effectiveness analyses are important tools in efforts to prioritise interventions for obesity prevention. Modelling facilitates evaluation of multiple scenarios with varying assumptions. This study compares the cost-effectiveness of conservative scenarios for two commonly proposed policy-based interventions: front-of-pack 'traffic-light' nutrition labelling (traffic-light labelling) and a tax on unhealthy foods ('junk-food' tax). METHODS: For traffic-light labelling, estimates of changes in energy intake were based on an assumed 10% shift in consumption towards healthier options in four food categories (breakfast cereals, pastries, sausages and preprepared meals) in 10% of adults. For the 'junk-food' tax, price elasticities were used to estimate a change in energy intake in response to a 10% price increase in seven food categories (including soft drinks, confectionery and snack foods). Changes in population weight and body mass index by sex were then estimated based on these changes in population energy intake, along with subsequent impacts on disability-adjusted life years (DALYs). Associated resource use was measured and costed using pathway analysis, based on a health sector perspective (with some industry costs included). Costs and health outcomes were discounted at 3%. The cost-effectiveness of each intervention was modelled for the 2003 Australian adult population. RESULTS: Both interventions resulted in reduced mean weight (traffic-light labelling: 1.3 kg (95% uncertainty interval (UI): 1.2; 1.4); 'junk-food' tax: 1.6 kg (95% UI: 1.5; 1.7)); and DALYs averted (traffic-light labelling: 45,100 (95% UI: 37,700; 60,100); 'junk-food' tax: 559,000 (95% UI: 459,500; 676,000)). Cost outlays were AUD81 million (95% UI: 44.7; 108.0) for traffic-light labelling and AUD18 million (95% UI: 14.4; 21.6) for 'junk-food' tax. Cost-effectiveness analysis showed both interventions were 'dominant' (effective and cost-saving). CONCLUSION: Policy-based population-wide interventions such as traffic-light nutrition labelling and taxes on unhealthy foods are likely to offer excellent 'value for money' as obesity prevention measures. More... »

PAGES

1001

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ijo.2010.228

DOI

http://dx.doi.org/10.1038/ijo.2010.228

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004096460

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21079620


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Australia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fast Foods", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Labeling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Preferences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Behavior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Promotion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nutritive Value", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Deakin University", 
          "id": "https://www.grid.ac/institutes/grid.1021.2", 
          "name": [
            "WHO Collaborating Centre for Obesity Prevention, Deakin University, Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sacks", 
        "givenName": "G", 
        "id": "sg:person.01327570615.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327570615.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "School of Population Health, The University of Queensland, Brisbane, Queensland, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veerman", 
        "givenName": "J L", 
        "id": "sg:person.0753173205.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753173205.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deakin University", 
          "id": "https://www.grid.ac/institutes/grid.1021.2", 
          "name": [
            "Deakin Health Economics, Deakin University, Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moodie", 
        "givenName": "M", 
        "id": "sg:person.01211076301.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211076301.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deakin University", 
          "id": "https://www.grid.ac/institutes/grid.1021.2", 
          "name": [
            "WHO Collaborating Centre for Obesity Prevention, Deakin University, Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swinburn", 
        "givenName": "B", 
        "id": "sg:person.010417370224.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010417370224.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1360-0443.2009.02708.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001499137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1360-0443.2009.02708.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001499137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.2009.29041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004202373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-200119110-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011251931", 
          "https://doi.org/10.2165/00019053-200119110-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-200119110-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011251931", 
          "https://doi.org/10.2165/00019053-200119110-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/heapro/17.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012667047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013036253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jadohealth.2009.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013387119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14737167.8.6.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013882950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016133194", 
          "https://doi.org/10.1038/sj.ijo.0803469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016133194", 
          "https://doi.org/10.1038/sj.ijo.0803469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1368980008004059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016305533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/heapro/dap032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018058153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ypmed.2004.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018130604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-789x.2006.00242.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023094144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-789x.2006.00242.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023094144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10389-007-0101-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026169292", 
          "https://doi.org/10.1007/s10389-007-0101-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10389-007-0101-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026169292", 
          "https://doi.org/10.1007/s10389-007-0101-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-9-419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029909945", 
          "https://doi.org/10.1186/1471-2458-9-419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyp214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035857922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.2008.27061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049531294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1499-4046(06)60006-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049817880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1614.2005.01654.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050152779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1368980009005643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050335295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1368980009005643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050335295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-789x.2008.00524.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050723448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.2006.047746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051510836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2010.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052798612", 
          "https://doi.org/10.1038/ijo.2010.246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.2010.28450c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053075871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/phn2005666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058253152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15288/jsa.2004.65.782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067708972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2471/blt.09.070987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070837537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07", 
    "datePublishedReg": "2011-07-01", 
    "description": "INTRODUCTION: Cost-effectiveness analyses are important tools in efforts to prioritise interventions for obesity prevention. Modelling facilitates evaluation of multiple scenarios with varying assumptions. This study compares the cost-effectiveness of conservative scenarios for two commonly proposed policy-based interventions: front-of-pack 'traffic-light' nutrition labelling (traffic-light labelling) and a tax on unhealthy foods ('junk-food' tax).\nMETHODS: For traffic-light labelling, estimates of changes in energy intake were based on an assumed 10% shift in consumption towards healthier options in four food categories (breakfast cereals, pastries, sausages and preprepared meals) in 10% of adults. For the 'junk-food' tax, price elasticities were used to estimate a change in energy intake in response to a 10% price increase in seven food categories (including soft drinks, confectionery and snack foods). Changes in population weight and body mass index by sex were then estimated based on these changes in population energy intake, along with subsequent impacts on disability-adjusted life years (DALYs). Associated resource use was measured and costed using pathway analysis, based on a health sector perspective (with some industry costs included). Costs and health outcomes were discounted at 3%. The cost-effectiveness of each intervention was modelled for the 2003 Australian adult population.\nRESULTS: Both interventions resulted in reduced mean weight (traffic-light labelling: 1.3 kg (95% uncertainty interval (UI): 1.2; 1.4); 'junk-food' tax: 1.6 kg (95% UI: 1.5; 1.7)); and DALYs averted (traffic-light labelling: 45,100 (95% UI: 37,700; 60,100); 'junk-food' tax: 559,000 (95% UI: 459,500; 676,000)). Cost outlays were AUD81 million (95% UI: 44.7; 108.0) for traffic-light labelling and AUD18 million (95% UI: 14.4; 21.6) for 'junk-food' tax. Cost-effectiveness analysis showed both interventions were 'dominant' (effective and cost-saving).\nCONCLUSION: Policy-based population-wide interventions such as traffic-light nutrition labelling and taxes on unhealthy foods are likely to offer excellent 'value for money' as obesity prevention measures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ijo.2010.228", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6715221", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1035838", 
        "issn": [
          "0307-0565", 
          "1476-5497"
        ], 
        "name": "International Journal of Obesity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "\u2018Traffic-light\u2019 nutrition labelling and \u2018junk-food\u2019 tax: a modelled comparison of cost-effectiveness for obesity prevention", 
    "pagination": "1001", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1384f5a79cb205d3714a7341e068476a13e90e319c7cbd129edc72f442a9b5c8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21079620"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101256108"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ijo.2010.228"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004096460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ijo.2010.228", 
      "https://app.dimensions.ai/details/publication/pub.1004096460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ijo2010228"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ijo.2010.228'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ijo.2010.228'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ijo.2010.228'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ijo.2010.228'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      67 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ijo.2010.228 schema:about N33125f2b27a84c0397a7223d44d5915a
2 N33197c71a63b4602927eebb1b83f734a
3 N3396cd75663a4cee9489a0e1fdbca1e5
4 N58a7b91974934d40a8fa37a7f6915876
5 N8680dbc9666d4dbf978ed0f19d8059c3
6 Ncb276a58552b4cbc81485a29e96d5317
7 Ncdf2ebd9b027476594c74c821b060dd9
8 Nd7a86782c65643eb8f43ae0b3020a1f1
9 Nd8ef9700fef748ce9f8edbdab749b116
10 Nde3f5fb9558f4106984c4ff28c08aa65
11 Ne31300b1448a428686b04753af21705e
12 Ne663606a5ca54d1da0ff4a35a036ffec
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author Naaf6abcd6fd04ba6a57e1e939ca37910
16 schema:citation sg:pub.10.1007/s10389-007-0101-9
17 sg:pub.10.1038/ijo.2010.246
18 sg:pub.10.1038/sj.ijo.0803469
19 sg:pub.10.1186/1471-2458-9-419
20 sg:pub.10.2165/00019053-200119110-00004
21 https://doi.org/10.1016/j.jadohealth.2009.03.003
22 https://doi.org/10.1016/j.ypmed.2004.04.002
23 https://doi.org/10.1016/s1499-4046(06)60006-7
24 https://doi.org/10.1017/s1368980008004059
25 https://doi.org/10.1017/s1368980009005643
26 https://doi.org/10.1079/phn2005666
27 https://doi.org/10.1093/heapro/17.1.13
28 https://doi.org/10.1093/heapro/dap032
29 https://doi.org/10.1093/ije/dyp214
30 https://doi.org/10.1111/j.1360-0443.2009.02708.x
31 https://doi.org/10.1111/j.1440-1614.2005.01654.x
32 https://doi.org/10.1111/j.1467-789x.2006.00242.x
33 https://doi.org/10.1111/j.1467-789x.2008.00524.x
34 https://doi.org/10.1136/jech.2006.047746
35 https://doi.org/10.1371/journal.pmed.1000110
36 https://doi.org/10.15288/jsa.2004.65.782
37 https://doi.org/10.1586/14737167.8.6.593
38 https://doi.org/10.2471/blt.09.070987
39 https://doi.org/10.3945/ajcn.2008.27061
40 https://doi.org/10.3945/ajcn.2009.29041
41 https://doi.org/10.3945/ajcn.2010.28450c
42 schema:datePublished 2011-07
43 schema:datePublishedReg 2011-07-01
44 schema:description INTRODUCTION: Cost-effectiveness analyses are important tools in efforts to prioritise interventions for obesity prevention. Modelling facilitates evaluation of multiple scenarios with varying assumptions. This study compares the cost-effectiveness of conservative scenarios for two commonly proposed policy-based interventions: front-of-pack 'traffic-light' nutrition labelling (traffic-light labelling) and a tax on unhealthy foods ('junk-food' tax). METHODS: For traffic-light labelling, estimates of changes in energy intake were based on an assumed 10% shift in consumption towards healthier options in four food categories (breakfast cereals, pastries, sausages and preprepared meals) in 10% of adults. For the 'junk-food' tax, price elasticities were used to estimate a change in energy intake in response to a 10% price increase in seven food categories (including soft drinks, confectionery and snack foods). Changes in population weight and body mass index by sex were then estimated based on these changes in population energy intake, along with subsequent impacts on disability-adjusted life years (DALYs). Associated resource use was measured and costed using pathway analysis, based on a health sector perspective (with some industry costs included). Costs and health outcomes were discounted at 3%. The cost-effectiveness of each intervention was modelled for the 2003 Australian adult population. RESULTS: Both interventions resulted in reduced mean weight (traffic-light labelling: 1.3 kg (95% uncertainty interval (UI): 1.2; 1.4); 'junk-food' tax: 1.6 kg (95% UI: 1.5; 1.7)); and DALYs averted (traffic-light labelling: 45,100 (95% UI: 37,700; 60,100); 'junk-food' tax: 559,000 (95% UI: 459,500; 676,000)). Cost outlays were AUD81 million (95% UI: 44.7; 108.0) for traffic-light labelling and AUD18 million (95% UI: 14.4; 21.6) for 'junk-food' tax. Cost-effectiveness analysis showed both interventions were 'dominant' (effective and cost-saving). CONCLUSION: Policy-based population-wide interventions such as traffic-light nutrition labelling and taxes on unhealthy foods are likely to offer excellent 'value for money' as obesity prevention measures.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N0142bbc67b1a4cb7a79f519265222439
49 N7c01ee7cc94e41f489b4a7404bcd18ae
50 sg:journal.1035838
51 schema:name ‘Traffic-light’ nutrition labelling and ‘junk-food’ tax: a modelled comparison of cost-effectiveness for obesity prevention
52 schema:pagination 1001
53 schema:productId N4b2e021d9bca4457a21f630d5b59a0f1
54 N4d25e102dbb241349faa8da25adbf0cb
55 N6fee88cae5034a659cc681a3ab42f25d
56 N74c7db513e3a453cb2297dc87b8ad86d
57 Nb55c1f4fb8da40cdaa5ca9620f50d13a
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004096460
59 https://doi.org/10.1038/ijo.2010.228
60 schema:sdDatePublished 2019-04-10T18:09
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N89b73b85b53d480798c41b5e2e096a1d
63 schema:url https://www.nature.com/articles/ijo2010228
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0142bbc67b1a4cb7a79f519265222439 schema:issueNumber 7
68 rdf:type schema:PublicationIssue
69 N2284c5032df14d0dbe22e3251a7e5dbc rdf:first sg:person.010417370224.72
70 rdf:rest rdf:nil
71 N33125f2b27a84c0397a7223d44d5915a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Obesity
73 rdf:type schema:DefinedTerm
74 N33197c71a63b4602927eebb1b83f734a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Food Preferences
76 rdf:type schema:DefinedTerm
77 N3396cd75663a4cee9489a0e1fdbca1e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Male
79 rdf:type schema:DefinedTerm
80 N4b2e021d9bca4457a21f630d5b59a0f1 schema:name pubmed_id
81 schema:value 21079620
82 rdf:type schema:PropertyValue
83 N4d25e102dbb241349faa8da25adbf0cb schema:name dimensions_id
84 schema:value pub.1004096460
85 rdf:type schema:PropertyValue
86 N58a7b91974934d40a8fa37a7f6915876 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Nutritive Value
88 rdf:type schema:DefinedTerm
89 N69ed0b15c6a84ccdb08fca87bc02a1db rdf:first sg:person.0753173205.36
90 rdf:rest N6fb93b97c10846c69b32a81c149ad712
91 N6fb93b97c10846c69b32a81c149ad712 rdf:first sg:person.01211076301.44
92 rdf:rest N2284c5032df14d0dbe22e3251a7e5dbc
93 N6fee88cae5034a659cc681a3ab42f25d schema:name readcube_id
94 schema:value 1384f5a79cb205d3714a7341e068476a13e90e319c7cbd129edc72f442a9b5c8
95 rdf:type schema:PropertyValue
96 N74c7db513e3a453cb2297dc87b8ad86d schema:name nlm_unique_id
97 schema:value 101256108
98 rdf:type schema:PropertyValue
99 N7c01ee7cc94e41f489b4a7404bcd18ae schema:volumeNumber 35
100 rdf:type schema:PublicationVolume
101 N8680dbc9666d4dbf978ed0f19d8059c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Humans
103 rdf:type schema:DefinedTerm
104 N89b73b85b53d480798c41b5e2e096a1d schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Naaf6abcd6fd04ba6a57e1e939ca37910 rdf:first sg:person.01327570615.10
107 rdf:rest N69ed0b15c6a84ccdb08fca87bc02a1db
108 Nb55c1f4fb8da40cdaa5ca9620f50d13a schema:name doi
109 schema:value 10.1038/ijo.2010.228
110 rdf:type schema:PropertyValue
111 Ncb276a58552b4cbc81485a29e96d5317 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Food Labeling
113 rdf:type schema:DefinedTerm
114 Ncdf2ebd9b027476594c74c821b060dd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Fast Foods
116 rdf:type schema:DefinedTerm
117 Nd7a86782c65643eb8f43ae0b3020a1f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Australia
119 rdf:type schema:DefinedTerm
120 Nd8ef9700fef748ce9f8edbdab749b116 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Female
122 rdf:type schema:DefinedTerm
123 Nde3f5fb9558f4106984c4ff28c08aa65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Cost-Benefit Analysis
125 rdf:type schema:DefinedTerm
126 Ne31300b1448a428686b04753af21705e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Health Behavior
128 rdf:type schema:DefinedTerm
129 Ne663606a5ca54d1da0ff4a35a036ffec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Health Promotion
131 rdf:type schema:DefinedTerm
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
136 schema:name Public Health and Health Services
137 rdf:type schema:DefinedTerm
138 sg:grant.6715221 http://pending.schema.org/fundedItem sg:pub.10.1038/ijo.2010.228
139 rdf:type schema:MonetaryGrant
140 sg:journal.1035838 schema:issn 0307-0565
141 1476-5497
142 schema:name International Journal of Obesity
143 rdf:type schema:Periodical
144 sg:person.010417370224.72 schema:affiliation https://www.grid.ac/institutes/grid.1021.2
145 schema:familyName Swinburn
146 schema:givenName B
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010417370224.72
148 rdf:type schema:Person
149 sg:person.01211076301.44 schema:affiliation https://www.grid.ac/institutes/grid.1021.2
150 schema:familyName Moodie
151 schema:givenName M
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211076301.44
153 rdf:type schema:Person
154 sg:person.01327570615.10 schema:affiliation https://www.grid.ac/institutes/grid.1021.2
155 schema:familyName Sacks
156 schema:givenName G
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327570615.10
158 rdf:type schema:Person
159 sg:person.0753173205.36 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
160 schema:familyName Veerman
161 schema:givenName J L
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753173205.36
163 rdf:type schema:Person
164 sg:pub.10.1007/s10389-007-0101-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026169292
165 https://doi.org/10.1007/s10389-007-0101-9
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/ijo.2010.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052798612
168 https://doi.org/10.1038/ijo.2010.246
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/sj.ijo.0803469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016133194
171 https://doi.org/10.1038/sj.ijo.0803469
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2458-9-419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029909945
174 https://doi.org/10.1186/1471-2458-9-419
175 rdf:type schema:CreativeWork
176 sg:pub.10.2165/00019053-200119110-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011251931
177 https://doi.org/10.2165/00019053-200119110-00004
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jadohealth.2009.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013387119
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ypmed.2004.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018130604
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s1499-4046(06)60006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049817880
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1017/s1368980008004059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016305533
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1017/s1368980009005643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050335295
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1079/phn2005666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058253152
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/heapro/17.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012667047
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/heapro/dap032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018058153
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/ije/dyp214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035857922
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/j.1360-0443.2009.02708.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001499137
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1440-1614.2005.01654.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050152779
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1467-789x.2006.00242.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023094144
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1467-789x.2008.00524.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050723448
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1136/jech.2006.047746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510836
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1371/journal.pmed.1000110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013036253
208 rdf:type schema:CreativeWork
209 https://doi.org/10.15288/jsa.2004.65.782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067708972
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1586/14737167.8.6.593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013882950
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2471/blt.09.070987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070837537
214 rdf:type schema:CreativeWork
215 https://doi.org/10.3945/ajcn.2008.27061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049531294
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3945/ajcn.2009.29041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004202373
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3945/ajcn.2010.28450c schema:sameAs https://app.dimensions.ai/details/publication/pub.1053075871
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
222 schema:name School of Population Health, The University of Queensland, Brisbane, Queensland, Australia
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.1021.2 schema:alternateName Deakin University
225 schema:name Deakin Health Economics, Deakin University, Melbourne, Victoria, Australia
226 WHO Collaborating Centre for Obesity Prevention, Deakin University, Melbourne, Victoria, Australia
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...