Effect of metabolic syndrome components and their clustering on carotid atherosclerosis in a sample of the general Japanese population View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

Chiaki Hirata, Nobuyuki Miyai, Ayaka Idoue, Miyoko Utsumi, Sonomi Hattori, Akihiko Iwahara, Yuji Uematsu, Mitsuru Shiba, Mikio Arita

ABSTRACT

The objective of this study was to investigate the impact of metabolic syndrome (MS) on carotid atherosclerosis in a Japanese population. A total of 1727 subjects (805 males and 922 females) were included. Intima-media thickness (IMT) was measured using ultrasonography. To evaluate the independent determinants of IMT, a stepwise multiple regression analysis was employed that included age, current smoking habit, LDL-C, HbA1c and the MS components (SBP, DBP, TG, HDL-C, FBG, and WC) as independent variables. Multivariate regression analyses were performed to determine the independent associations of the MS components with IMT. In males, age (β=0.383, P<0.001), SBP (β=0.237, P<0.001), LDL-C (β=0.188, P<0.001), current smoking habit (β=0.124, P=0.007) and HbA1c (β=0.110, P=0.014) were significantly associated with IMT. In females, age (β=0.474, P<0.001), SBP (β=0.130, P=0.003) and FBG (β=0.110, P=0.038) were significantly associated with IMT. The present study demonstrated that an elevated number of MS components, with or without central obesity, is associated with higher IMT. Among the analyzed components, hypertension has the strongest association with higher IMT. More... »

PAGES

362

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hr.2015.152

DOI

http://dx.doi.org/10.1038/hr.2015.152

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027626686

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26791011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Intima-Media Thickness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Chiaki", 
        "id": "sg:person.01022516240.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022516240.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyai", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.01167135710.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167135710.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Idoue", 
        "givenName": "Ayaka", 
        "id": "sg:person.0754403040.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754403040.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Utsumi", 
        "givenName": "Miyoko", 
        "id": "sg:person.01070631440.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070631440.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattori", 
        "givenName": "Sonomi", 
        "id": "sg:person.014727627711.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727627711.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwahara", 
        "givenName": "Akihiko", 
        "id": "sg:person.016641612351.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016641612351.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uematsu", 
        "givenName": "Yuji", 
        "id": "sg:person.01124300174.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124300174.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiba", 
        "givenName": "Mitsuru", 
        "id": "sg:person.01367421640.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367421640.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arita", 
        "givenName": "Mikio", 
        "id": "sg:person.01327711512.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327711512.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.str.0000258003.31194.0a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000998581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000258003.31194.0a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000998581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2169/internalmedicine.44.1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003007012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2169/internalmedicine.44.1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003007012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000166196.31227.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006874761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000166196.31227.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006874761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000166196.31227.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006874761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.7922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008610728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.108.845065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009039395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc06-1866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014102637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015208928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015208928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.290.17.2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016376495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2014.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017968150", 
          "https://doi.org/10.1038/hr.2014.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2014.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017968150", 
          "https://doi.org/10.1038/hr.2014.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2014.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017968150", 
          "https://doi.org/10.1038/hr.2014.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1507/endocrj.k06-210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018397597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2840-11-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019276021", 
          "https://doi.org/10.1186/1475-2840-11-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-7120-4-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020052300", 
          "https://doi.org/10.1186/1476-7120-4-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/circj.cj-09-0477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022627216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.24.12.1837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023896162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2013.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026506951", 
          "https://doi.org/10.1038/hr.2013.148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2013.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026506951", 
          "https://doi.org/10.1038/hr.2013.148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1291/hypres.28.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031910636", 
          "https://doi.org/10.1291/hypres.28.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.1991.tb00336.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032651497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.1991.tb00336.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032651497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199901073400103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033669673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.11.5.1245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034210355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a009302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038082244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabres.2009.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038099091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.e505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044313191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.160.15.2297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049505585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052182857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000072273.67342.6d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052301933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000072273.67342.6d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052301933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.96.5.1432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063338370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.70.829.9059301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064566236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/str.32.10.2265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074890249"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "The objective of this study was to investigate the impact of metabolic syndrome (MS) on carotid atherosclerosis in a Japanese population. A total of 1727 subjects (805 males and 922 females) were included. Intima-media thickness (IMT) was measured using ultrasonography. To evaluate the independent determinants of IMT, a stepwise multiple regression analysis was employed that included age, current smoking habit, LDL-C, HbA1c and the MS components (SBP, DBP, TG, HDL-C, FBG, and WC) as independent variables. Multivariate regression analyses were performed to determine the independent associations of the MS components with IMT. In males, age (\u03b2=0.383, P<0.001), SBP (\u03b2=0.237, P<0.001), LDL-C (\u03b2=0.188, P<0.001), current smoking habit (\u03b2=0.124, P=0.007) and HbA1c (\u03b2=0.110, P=0.014) were significantly associated with IMT. In females, age (\u03b2=0.474, P<0.001), SBP (\u03b2=0.130, P=0.003) and FBG (\u03b2=0.110, P=0.038) were significantly associated with IMT. The present study demonstrated that an elevated number of MS components, with or without central obesity, is associated with higher IMT. Among the analyzed components, hypertension has the strongest association with higher IMT. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/hr.2015.152", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6112560", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Effect of metabolic syndrome components and their clustering on carotid atherosclerosis in a sample of the general Japanese population", 
    "pagination": "362", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "839b81f5eb8af0066eb44825c4447d130834c54f6692808d14702a503d85ae47"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26791011"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9307690"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hr.2015.152"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027626686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hr.2015.152", 
      "https://app.dimensions.ai/details/publication/pub.1027626686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000437.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/hr2015152"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hr.2015.152'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hr.2015.152'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hr.2015.152'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hr.2015.152'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      21 PREDICATES      73 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hr.2015.152 schema:about N064b89127761438483ec944219b820c6
2 N219185e1cc58494597ac93c7ffdd0c4a
3 N262f4884e9054722bf9f5030aaddfc34
4 N488305d76f774f1ca552159a86cd4dd9
5 N49f27a3138ad4c12ada667e6173e3a0f
6 N846964b1ab59428c9f49b3a5e39fb34f
7 N923422246f754125ab0fd4d2aad4e709
8 Nb4917c9798f541b3acbcd6c538be52e7
9 Nb6554c184bea4788bbca3f1876c6dc21
10 Nbbce18c39785403e99b31977053bc5d8
11 Nc178e392613548c58c0e64d2c2345918
12 Ncb39beb66c8648ad8cbf00ecb90f082f
13 Nd3642f9237aa4542a1a55c4ecceb7a9c
14 Ndba608ee1c9f4382af324ca12c8aa864
15 Nde7b2120337c478186f8f2091a12ca50
16 Nf3acd0ade53a48afbdc33fdcd1b343d2
17 anzsrc-for:11
18 anzsrc-for:1117
19 schema:author N0cbb1ff8725445939e8860c0358975e3
20 schema:citation sg:pub.10.1038/hr.2013.148
21 sg:pub.10.1038/hr.2014.43
22 sg:pub.10.1186/1475-2840-11-77
23 sg:pub.10.1186/1476-7120-4-28
24 sg:pub.10.1291/hypres.28.27
25 https://doi.org/10.1001/archinte.160.15.2297
26 https://doi.org/10.1001/jama.290.17.2277
27 https://doi.org/10.1016/j.diabres.2009.09.013
28 https://doi.org/10.1056/nejm199901073400103
29 https://doi.org/10.1093/oxfordjournals.aje.a009302
30 https://doi.org/10.1111/j.1365-2796.1991.tb00336.x
31 https://doi.org/10.1161/01.atv.0000072273.67342.6d
32 https://doi.org/10.1161/01.atv.11.5.1245
33 https://doi.org/10.1161/01.cir.96.5.1432
34 https://doi.org/10.1161/01.str.0000166196.31227.91
35 https://doi.org/10.1161/01.str.0000258003.31194.0a
36 https://doi.org/10.1161/01.str.24.12.1837
37 https://doi.org/10.1161/circulationaha.108.845065
38 https://doi.org/10.1161/str.32.10.2265
39 https://doi.org/10.1161/strokeaha.106.479642
40 https://doi.org/10.1253/circj.cj-09-0477
41 https://doi.org/10.1259/bjr.70.829.9059301
42 https://doi.org/10.1507/endocrj.k06-210
43 https://doi.org/10.2169/internalmedicine.44.1232
44 https://doi.org/10.2337/dc06-1866
45 https://doi.org/10.5551/jat.7278
46 https://doi.org/10.5551/jat.7922
47 https://doi.org/10.5551/jat.e505
48 schema:datePublished 2016-05
49 schema:datePublishedReg 2016-05-01
50 schema:description The objective of this study was to investigate the impact of metabolic syndrome (MS) on carotid atherosclerosis in a Japanese population. A total of 1727 subjects (805 males and 922 females) were included. Intima-media thickness (IMT) was measured using ultrasonography. To evaluate the independent determinants of IMT, a stepwise multiple regression analysis was employed that included age, current smoking habit, LDL-C, HbA1c and the MS components (SBP, DBP, TG, HDL-C, FBG, and WC) as independent variables. Multivariate regression analyses were performed to determine the independent associations of the MS components with IMT. In males, age (β=0.383, P<0.001), SBP (β=0.237, P<0.001), LDL-C (β=0.188, P<0.001), current smoking habit (β=0.124, P=0.007) and HbA1c (β=0.110, P=0.014) were significantly associated with IMT. In females, age (β=0.474, P<0.001), SBP (β=0.130, P=0.003) and FBG (β=0.110, P=0.038) were significantly associated with IMT. The present study demonstrated that an elevated number of MS components, with or without central obesity, is associated with higher IMT. Among the analyzed components, hypertension has the strongest association with higher IMT.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf Nb10f6a9564ae42f893b8863f57872a35
55 Ndfa0a193e9ed4e50879e99cad2b36bf1
56 sg:journal.1313717
57 schema:name Effect of metabolic syndrome components and their clustering on carotid atherosclerosis in a sample of the general Japanese population
58 schema:pagination 362
59 schema:productId N12d31f0dc1114b04badbdcabd023e06b
60 N4e4d44de00cf47069864f095088b7706
61 N872ca44c214a415ab56a06c88f21608f
62 N99e2df22abf44187bb53e4d3a7442340
63 Nd84948676c1c428aa316ccf10cb9ba48
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027626686
65 https://doi.org/10.1038/hr.2015.152
66 schema:sdDatePublished 2019-04-10T15:40
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N5d9c2155ec874a1ab51e59d7dc131288
69 schema:url https://www.nature.com/articles/hr2015152
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N064b89127761438483ec944219b820c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Adult
75 rdf:type schema:DefinedTerm
76 N0cbb1ff8725445939e8860c0358975e3 rdf:first sg:person.01022516240.56
77 rdf:rest N848215c95f504f08a46cd861dc220b8e
78 N12d31f0dc1114b04badbdcabd023e06b schema:name nlm_unique_id
79 schema:value 9307690
80 rdf:type schema:PropertyValue
81 N219185e1cc58494597ac93c7ffdd0c4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Smoking
83 rdf:type schema:DefinedTerm
84 N262f4884e9054722bf9f5030aaddfc34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Cluster Analysis
86 rdf:type schema:DefinedTerm
87 N38e5aaaf3c4e4d2f9abaa6c3b08504cb rdf:first sg:person.01367421640.12
88 rdf:rest N50f606e24fab48a489d27c82fd681f6d
89 N488305d76f774f1ca552159a86cd4dd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Ultrasonography
91 rdf:type schema:DefinedTerm
92 N49f27a3138ad4c12ada667e6173e3a0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Age Factors
94 rdf:type schema:DefinedTerm
95 N4e4d44de00cf47069864f095088b7706 schema:name readcube_id
96 schema:value 839b81f5eb8af0066eb44825c4447d130834c54f6692808d14702a503d85ae47
97 rdf:type schema:PropertyValue
98 N50f606e24fab48a489d27c82fd681f6d rdf:first sg:person.01327711512.24
99 rdf:rest rdf:nil
100 N5d9c2155ec874a1ab51e59d7dc131288 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N846964b1ab59428c9f49b3a5e39fb34f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Japan
104 rdf:type schema:DefinedTerm
105 N848215c95f504f08a46cd861dc220b8e rdf:first sg:person.01167135710.19
106 rdf:rest Nb255ac5bd9bf485eaafcfbf18d891dd7
107 N872ca44c214a415ab56a06c88f21608f schema:name doi
108 schema:value 10.1038/hr.2015.152
109 rdf:type schema:PropertyValue
110 N923422246f754125ab0fd4d2aad4e709 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N99e2df22abf44187bb53e4d3a7442340 schema:name dimensions_id
114 schema:value pub.1027626686
115 rdf:type schema:PropertyValue
116 Nb10f6a9564ae42f893b8863f57872a35 schema:issueNumber 5
117 rdf:type schema:PublicationIssue
118 Nb255ac5bd9bf485eaafcfbf18d891dd7 rdf:first sg:person.0754403040.71
119 rdf:rest Nef1ce820401e476093a57328306dbf45
120 Nb4917c9798f541b3acbcd6c538be52e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aged
122 rdf:type schema:DefinedTerm
123 Nb6554c184bea4788bbca3f1876c6dc21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Middle Aged
125 rdf:type schema:DefinedTerm
126 Nbbce18c39785403e99b31977053bc5d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Humans
128 rdf:type schema:DefinedTerm
129 Nc178e392613548c58c0e64d2c2345918 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Carotid Intima-Media Thickness
131 rdf:type schema:DefinedTerm
132 Ncb39beb66c8648ad8cbf00ecb90f082f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Female
134 rdf:type schema:DefinedTerm
135 Nd3642f9237aa4542a1a55c4ecceb7a9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Risk Factors
137 rdf:type schema:DefinedTerm
138 Nd84948676c1c428aa316ccf10cb9ba48 schema:name pubmed_id
139 schema:value 26791011
140 rdf:type schema:PropertyValue
141 Ndba608ee1c9f4382af324ca12c8aa864 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Metabolic Syndrome
143 rdf:type schema:DefinedTerm
144 Nde7b2120337c478186f8f2091a12ca50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Sex Factors
146 rdf:type schema:DefinedTerm
147 Ndfa0a193e9ed4e50879e99cad2b36bf1 schema:volumeNumber 39
148 rdf:type schema:PublicationVolume
149 Ne70404ba333b4b5cbb8ec483931cf562 rdf:first sg:person.016641612351.48
150 rdf:rest Nfd81a4de9d58496cbbffa2be1b5aba2c
151 Nef1ce820401e476093a57328306dbf45 rdf:first sg:person.01070631440.28
152 rdf:rest Nf64d593ca32a4658823d92344b1cb549
153 Nf3acd0ade53a48afbdc33fdcd1b343d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Carotid Artery Diseases
155 rdf:type schema:DefinedTerm
156 Nf64d593ca32a4658823d92344b1cb549 rdf:first sg:person.014727627711.05
157 rdf:rest Ne70404ba333b4b5cbb8ec483931cf562
158 Nfd81a4de9d58496cbbffa2be1b5aba2c rdf:first sg:person.01124300174.14
159 rdf:rest N38e5aaaf3c4e4d2f9abaa6c3b08504cb
160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
161 schema:name Medical and Health Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
164 schema:name Public Health and Health Services
165 rdf:type schema:DefinedTerm
166 sg:grant.6112560 http://pending.schema.org/fundedItem sg:pub.10.1038/hr.2015.152
167 rdf:type schema:MonetaryGrant
168 sg:journal.1313717 schema:issn 0916-9636
169 1348-4214
170 schema:name Hypertension Research
171 rdf:type schema:Periodical
172 sg:person.01022516240.56 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
173 schema:familyName Hirata
174 schema:givenName Chiaki
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022516240.56
176 rdf:type schema:Person
177 sg:person.01070631440.28 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
178 schema:familyName Utsumi
179 schema:givenName Miyoko
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070631440.28
181 rdf:type schema:Person
182 sg:person.01124300174.14 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
183 schema:familyName Uematsu
184 schema:givenName Yuji
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124300174.14
186 rdf:type schema:Person
187 sg:person.01167135710.19 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
188 schema:familyName Miyai
189 schema:givenName Nobuyuki
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167135710.19
191 rdf:type schema:Person
192 sg:person.01327711512.24 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
193 schema:familyName Arita
194 schema:givenName Mikio
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327711512.24
196 rdf:type schema:Person
197 sg:person.01367421640.12 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
198 schema:familyName Shiba
199 schema:givenName Mitsuru
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367421640.12
201 rdf:type schema:Person
202 sg:person.014727627711.05 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
203 schema:familyName Hattori
204 schema:givenName Sonomi
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727627711.05
206 rdf:type schema:Person
207 sg:person.016641612351.48 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
208 schema:familyName Iwahara
209 schema:givenName Akihiko
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016641612351.48
211 rdf:type schema:Person
212 sg:person.0754403040.71 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
213 schema:familyName Idoue
214 schema:givenName Ayaka
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754403040.71
216 rdf:type schema:Person
217 sg:pub.10.1038/hr.2013.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026506951
218 https://doi.org/10.1038/hr.2013.148
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/hr.2014.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017968150
221 https://doi.org/10.1038/hr.2014.43
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1475-2840-11-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019276021
224 https://doi.org/10.1186/1475-2840-11-77
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1476-7120-4-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020052300
227 https://doi.org/10.1186/1476-7120-4-28
228 rdf:type schema:CreativeWork
229 sg:pub.10.1291/hypres.28.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031910636
230 https://doi.org/10.1291/hypres.28.27
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1001/archinte.160.15.2297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049505585
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1001/jama.290.17.2277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016376495
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.diabres.2009.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038099091
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1056/nejm199901073400103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033669673
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/oxfordjournals.aje.a009302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038082244
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1111/j.1365-2796.1991.tb00336.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032651497
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1161/01.atv.0000072273.67342.6d schema:sameAs https://app.dimensions.ai/details/publication/pub.1052301933
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1161/01.atv.11.5.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034210355
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1161/01.cir.96.5.1432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063338370
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1161/01.str.0000166196.31227.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006874761
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1161/01.str.0000258003.31194.0a schema:sameAs https://app.dimensions.ai/details/publication/pub.1000998581
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1161/01.str.24.12.1837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023896162
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1161/circulationaha.108.845065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009039395
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1161/str.32.10.2265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074890249
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1161/strokeaha.106.479642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015208928
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1253/circj.cj-09-0477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022627216
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1259/bjr.70.829.9059301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566236
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1507/endocrj.k06-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018397597
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2169/internalmedicine.44.1232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003007012
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2337/dc06-1866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014102637
271 rdf:type schema:CreativeWork
272 https://doi.org/10.5551/jat.7278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052182857
273 rdf:type schema:CreativeWork
274 https://doi.org/10.5551/jat.7922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008610728
275 rdf:type schema:CreativeWork
276 https://doi.org/10.5551/jat.e505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044313191
277 rdf:type schema:CreativeWork
278 https://www.grid.ac/institutes/grid.412857.d schema:alternateName Wakayama Medical University
279 schema:name Graduate School of Health and Nursing Science, Wakayama Medical University, Wakayama, Japan
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...