The inter-arm difference in systolic blood pressure is a novel risk marker for subclinical atherosclerosis in patients with type 2 ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03-06

AUTHORS

Yoshimitsu Tanaka, Michiaki Fukui, Muhei Tanaka, Yukiko Fukuda, Kazuteru Mitsuhashi, Hiroshi Okada, Masahiro Yamazaki, Goji Hasegawa, Keiji Yoshioka, Naoto Nakamura

ABSTRACT

Recent studies have suggested that the inter-arm blood pressure difference (IAD) is associated with cardiovascular events and mortality. The aim of this study was to assess whether the IAD could be a marker for subclinical atherosclerosis in patients with type 2 diabetes who are at high risk of cardiovascular disease (CVD). In a cross-sectional retrospective study of 206 Japanese patients with type 2 diabetes aged 49–76 years, we examined the correlation of the IAD with the carotid intima-media thickness (IMT), ankle-brachial index (ABI) or cardio ankle vascular index (CAVI). The IAD was positively correlated with the maximum IMT (r=0.266, P<0.0001), mean IMT (r=0.209, P=0.00726) or CAVI (r=0.240, P=0.0005). The IAD was higher in patients with CVD than in those without (P=0.0020). A multiple linear regression analysis demonstrated that the IAD was an independent determinant of maximum IMT (β=0.169, P=0.0167), mean IMT (β=0.178, P=0.0153), ABI (β=−0.222, P=0.0033) or CAVI (β=0.213, P=0.0011) after adjusting for known risk factors. The area under the receiver operating characteristic curve (AUC) of the IAD as a predictor of subclinical atherosclerosis was similar to the AUC of the Framingham 10-year coronary heart disease risk score. In conclusion, the IAD could be a novel risk marker for subclinical atherosclerosis in patients with type 2 diabetes. More... »

PAGES

548-552

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hr.2014.30

DOI

http://dx.doi.org/10.1038/hr.2014.30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024371545

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24599017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ankle Brachial Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure Monitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Intima-Media Thickness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Techniques, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Diabetes and Endocrine Diseases, Matsushita Memorial Hospital, Osaka, Moriguchi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416591.e", 
          "name": [
            "Department of Diabetes and Endocrine Diseases, Matsushita Memorial Hospital, Osaka, Moriguchi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Yoshimitsu", 
        "id": "sg:person.01314057106.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314057106.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Michiaki", 
        "id": "sg:person.016357516722.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Muhei", 
        "id": "sg:person.0703420760.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diabetes and Endocrine Diseases, Matsushita Memorial Hospital, Osaka, Moriguchi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416591.e", 
          "name": [
            "Department of Diabetes and Endocrine Diseases, Matsushita Memorial Hospital, Osaka, Moriguchi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuda", 
        "givenName": "Yukiko", 
        "id": "sg:person.0662513645.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662513645.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitsuhashi", 
        "givenName": "Kazuteru", 
        "id": "sg:person.01016276136.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016276136.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okada", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01261542332.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261542332.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazaki", 
        "givenName": "Masahiro", 
        "id": "sg:person.01103041632.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Goji", 
        "id": "sg:person.01162763674.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yoshioka Diabetes Clinic, Osaka, Moriguchi, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Yoshioka Diabetes Clinic, Osaka, Moriguchi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshioka", 
        "givenName": "Keiji", 
        "id": "sg:person.01125266650.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125266650.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Naoto", 
        "id": "sg:person.0677442163.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.jhh.1000998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033572649", 
          "https://doi.org/10.1038/sj.jhh.1000998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jhh.1002209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046954653", 
          "https://doi.org/10.1038/sj.jhh.1002209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2012.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030679161", 
          "https://doi.org/10.1038/hr.2012.207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jhh.1002093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005374653", 
          "https://doi.org/10.1038/sj.jhh.1002093"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03-06", 
    "datePublishedReg": "2014-03-06", 
    "description": "Recent studies have suggested that the inter-arm blood pressure difference (IAD) is associated with cardiovascular events and mortality. The aim of this study was to assess whether the IAD could be a marker for subclinical atherosclerosis in patients with type 2 diabetes who are at high risk of cardiovascular disease (CVD). In a cross-sectional retrospective study of 206 Japanese patients with type 2 diabetes aged 49\u201376 years, we examined the correlation of the IAD with the carotid intima-media thickness (IMT), ankle-brachial index (ABI) or cardio ankle vascular index (CAVI). The IAD was positively correlated with the maximum IMT (r=0.266, P<0.0001), mean IMT (r=0.209, P=0.00726) or CAVI (r=0.240, P=0.0005). The IAD was higher in patients with CVD than in those without (P=0.0020). A multiple linear regression analysis demonstrated that the IAD was an independent determinant of maximum IMT (\u03b2=0.169, P=0.0167), mean IMT (\u03b2=0.178, P=0.0153), ABI (\u03b2=\u22120.222, P=0.0033) or CAVI (\u03b2=0.213, P=0.0011) after adjusting for known risk factors. The area under the receiver operating characteristic curve (AUC) of the IAD as a predictor of subclinical atherosclerosis was similar to the AUC of the Framingham 10-year coronary heart disease risk score. In conclusion, the IAD could be a novel risk marker for subclinical atherosclerosis in patients with type 2 diabetes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/hr.2014.30", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "inter-arm blood pressure difference", 
      "intima-media thickness", 
      "cardio ankle vascular index", 
      "ankle-brachial index", 
      "type 2 diabetes", 
      "maximum intima-media thickness", 
      "novel risk markers", 
      "subclinical atherosclerosis", 
      "cardiovascular disease", 
      "risk markers", 
      "Framingham 10-year coronary heart disease risk score", 
      "coronary heart disease risk score", 
      "carotid intima-media thickness", 
      "cross-sectional retrospective study", 
      "inter-arm difference", 
      "blood pressure difference", 
      "systolic blood pressure", 
      "disease risk score", 
      "cardiovascular events", 
      "blood pressure", 
      "multiple linear regression analysis", 
      "retrospective study", 
      "vascular index", 
      "independent determinants", 
      "risk factors", 
      "Japanese patients", 
      "high risk", 
      "risk score", 
      "linear regression analysis", 
      "patients", 
      "type 2", 
      "atherosclerosis", 
      "diabetes", 
      "regression analysis", 
      "characteristic curve", 
      "markers", 
      "Recent studies", 
      "mortality", 
      "disease", 
      "study", 
      "AUC", 
      "index", 
      "risk", 
      "differences", 
      "predictors", 
      "scores", 
      "conclusion", 
      "aim", 
      "years", 
      "determinants", 
      "factors", 
      "events", 
      "correlation", 
      "pressure", 
      "pressure difference", 
      "curves", 
      "area", 
      "analysis", 
      "receiver", 
      "thickness", 
      "ankle vascular index", 
      "heart disease risk score"
    ], 
    "name": "The inter-arm difference in systolic blood pressure is a novel risk marker for subclinical atherosclerosis in patients with type 2 diabetes", 
    "pagination": "548-552", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024371545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hr.2014.30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24599017"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hr.2014.30", 
      "https://app.dimensions.ai/details/publication/pub.1024371545"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_635.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/hr.2014.30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hr.2014.30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hr.2014.30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hr.2014.30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hr.2014.30'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      22 PREDICATES      110 URIs      98 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hr.2014.30 schema:about N04f4434aa4c84be28b8b9c178570d6f4
2 N2302c7b23504461f815a648519b67464
3 N2dce8a3a3beb4f1da2611f26c22510a3
4 N2f71e090a11343669db7a15bfa94b795
5 N44d95745f3d1442bad3987365ea1c090
6 N468d1d9811fd4f24968e2d002bd0a144
7 N53f49684c1834301ad3c7e0f59c4424d
8 N5467ffb2965943f6a50d0699d0dbc968
9 N5c9f8e4d0fb7428cad2b1309132a3fdb
10 N79d473c28d97415c9800d5dc408e9059
11 N8826d3c80ef541298ecaf97d58e4cf02
12 N9955957ef71e4a6eacd28826f0bf6146
13 N99fc83c5d08e44d79066a5348feef779
14 N9d761e061f7b4328ae0adc89f110e90b
15 Nb193b77522e44698bc774c99bd336c3a
16 Nd1bfdc147c2348ac90f8c0eac4e80b11
17 Ne0b66b5453fb4a66a589691028912293
18 Nef9c74d7f1bc43f8a5deb31a3564b5a9
19 anzsrc-for:11
20 anzsrc-for:1102
21 schema:author N6065f7da905e427381491a03df44d1ee
22 schema:citation sg:pub.10.1038/hr.2012.207
23 sg:pub.10.1038/sj.jhh.1000998
24 sg:pub.10.1038/sj.jhh.1002093
25 sg:pub.10.1038/sj.jhh.1002209
26 schema:datePublished 2014-03-06
27 schema:datePublishedReg 2014-03-06
28 schema:description Recent studies have suggested that the inter-arm blood pressure difference (IAD) is associated with cardiovascular events and mortality. The aim of this study was to assess whether the IAD could be a marker for subclinical atherosclerosis in patients with type 2 diabetes who are at high risk of cardiovascular disease (CVD). In a cross-sectional retrospective study of 206 Japanese patients with type 2 diabetes aged 49–76 years, we examined the correlation of the IAD with the carotid intima-media thickness (IMT), ankle-brachial index (ABI) or cardio ankle vascular index (CAVI). The IAD was positively correlated with the maximum IMT (r=0.266, P<0.0001), mean IMT (r=0.209, P=0.00726) or CAVI (r=0.240, P=0.0005). The IAD was higher in patients with CVD than in those without (P=0.0020). A multiple linear regression analysis demonstrated that the IAD was an independent determinant of maximum IMT (β=0.169, P=0.0167), mean IMT (β=0.178, P=0.0153), ABI (β=−0.222, P=0.0033) or CAVI (β=0.213, P=0.0011) after adjusting for known risk factors. The area under the receiver operating characteristic curve (AUC) of the IAD as a predictor of subclinical atherosclerosis was similar to the AUC of the Framingham 10-year coronary heart disease risk score. In conclusion, the IAD could be a novel risk marker for subclinical atherosclerosis in patients with type 2 diabetes.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N695c0f188e0b4250ae556498fde435fc
33 Nd44d54290afc422597dedcf5e8071938
34 sg:journal.1313717
35 schema:keywords AUC
36 Framingham 10-year coronary heart disease risk score
37 Japanese patients
38 Recent studies
39 aim
40 analysis
41 ankle vascular index
42 ankle-brachial index
43 area
44 atherosclerosis
45 blood pressure
46 blood pressure difference
47 cardio ankle vascular index
48 cardiovascular disease
49 cardiovascular events
50 carotid intima-media thickness
51 characteristic curve
52 conclusion
53 coronary heart disease risk score
54 correlation
55 cross-sectional retrospective study
56 curves
57 determinants
58 diabetes
59 differences
60 disease
61 disease risk score
62 events
63 factors
64 heart disease risk score
65 high risk
66 independent determinants
67 index
68 inter-arm blood pressure difference
69 inter-arm difference
70 intima-media thickness
71 linear regression analysis
72 markers
73 maximum intima-media thickness
74 mortality
75 multiple linear regression analysis
76 novel risk markers
77 patients
78 predictors
79 pressure
80 pressure difference
81 receiver
82 regression analysis
83 retrospective study
84 risk
85 risk factors
86 risk markers
87 risk score
88 scores
89 study
90 subclinical atherosclerosis
91 systolic blood pressure
92 thickness
93 type 2
94 type 2 diabetes
95 vascular index
96 years
97 schema:name The inter-arm difference in systolic blood pressure is a novel risk marker for subclinical atherosclerosis in patients with type 2 diabetes
98 schema:pagination 548-552
99 schema:productId N0b2be919327a4de785677feff436aa90
100 N24af784f2a194b0796a1284ab2fca457
101 Nf4787bd046d044a7bc13970cba27c73d
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024371545
103 https://doi.org/10.1038/hr.2014.30
104 schema:sdDatePublished 2021-12-01T19:32
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Nee2749e709d4410abdd31d3520d23e28
107 schema:url https://doi.org/10.1038/hr.2014.30
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N04f4434aa4c84be28b8b9c178570d6f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Cross-Sectional Studies
113 rdf:type schema:DefinedTerm
114 N0b2be919327a4de785677feff436aa90 schema:name pubmed_id
115 schema:value 24599017
116 rdf:type schema:PropertyValue
117 N1d5eed2a20414974970c845801acb467 rdf:first sg:person.016357516722.38
118 rdf:rest Nfeb4615c6c3b4e8dad27c596751b8b75
119 N2302c7b23504461f815a648519b67464 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Atherosclerosis
121 rdf:type schema:DefinedTerm
122 N24af784f2a194b0796a1284ab2fca457 schema:name dimensions_id
123 schema:value pub.1024371545
124 rdf:type schema:PropertyValue
125 N2dce8a3a3beb4f1da2611f26c22510a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Diagnostic Techniques, Cardiovascular
127 rdf:type schema:DefinedTerm
128 N2f71e090a11343669db7a15bfa94b795 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Female
130 rdf:type schema:DefinedTerm
131 N3faedc32eb4a4e3e81e0442e2c693fa8 rdf:first sg:person.01125266650.19
132 rdf:rest N71a71467b4324a669887b27ddef21989
133 N44d95745f3d1442bad3987365ea1c090 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Retrospective Studies
135 rdf:type schema:DefinedTerm
136 N468d1d9811fd4f24968e2d002bd0a144 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Asian Continental Ancestry Group
138 rdf:type schema:DefinedTerm
139 N53f49684c1834301ad3c7e0f59c4424d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Diabetes Mellitus, Type 2
141 rdf:type schema:DefinedTerm
142 N5467ffb2965943f6a50d0699d0dbc968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Risk Factors
144 rdf:type schema:DefinedTerm
145 N5855d7e30861464d90f7aa40289b8b64 rdf:first sg:person.01162763674.43
146 rdf:rest N3faedc32eb4a4e3e81e0442e2c693fa8
147 N586bd4b971b94dc8b444629a969b941c rdf:first sg:person.01103041632.87
148 rdf:rest N5855d7e30861464d90f7aa40289b8b64
149 N5c9f8e4d0fb7428cad2b1309132a3fdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Blood Pressure Monitors
151 rdf:type schema:DefinedTerm
152 N6065f7da905e427381491a03df44d1ee rdf:first sg:person.01314057106.13
153 rdf:rest N1d5eed2a20414974970c845801acb467
154 N695c0f188e0b4250ae556498fde435fc schema:issueNumber 6
155 rdf:type schema:PublicationIssue
156 N71a71467b4324a669887b27ddef21989 rdf:first sg:person.0677442163.58
157 rdf:rest rdf:nil
158 N72b66e93f4054934aed3a58a67d8a9b3 rdf:first sg:person.0662513645.13
159 rdf:rest Nbf8235795f2649f482ac43b52474714f
160 N79d473c28d97415c9800d5dc408e9059 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Male
162 rdf:type schema:DefinedTerm
163 N8826d3c80ef541298ecaf97d58e4cf02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Carotid Intima-Media Thickness
165 rdf:type schema:DefinedTerm
166 N9955957ef71e4a6eacd28826f0bf6146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Blood Pressure
168 rdf:type schema:DefinedTerm
169 N99fc83c5d08e44d79066a5348feef779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Aged
171 rdf:type schema:DefinedTerm
172 N9d761e061f7b4328ae0adc89f110e90b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Linear Models
174 rdf:type schema:DefinedTerm
175 Nb193b77522e44698bc774c99bd336c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Arm
177 rdf:type schema:DefinedTerm
178 Nbf8235795f2649f482ac43b52474714f rdf:first sg:person.01016276136.59
179 rdf:rest Ndc575360578a47b1b7e147f00240bf17
180 Nd1bfdc147c2348ac90f8c0eac4e80b11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Ankle Brachial Index
182 rdf:type schema:DefinedTerm
183 Nd44d54290afc422597dedcf5e8071938 schema:volumeNumber 37
184 rdf:type schema:PublicationVolume
185 Ndc575360578a47b1b7e147f00240bf17 rdf:first sg:person.01261542332.81
186 rdf:rest N586bd4b971b94dc8b444629a969b941c
187 Ne0b66b5453fb4a66a589691028912293 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Humans
189 rdf:type schema:DefinedTerm
190 Nee2749e709d4410abdd31d3520d23e28 schema:name Springer Nature - SN SciGraph project
191 rdf:type schema:Organization
192 Nef9c74d7f1bc43f8a5deb31a3564b5a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Middle Aged
194 rdf:type schema:DefinedTerm
195 Nf4787bd046d044a7bc13970cba27c73d schema:name doi
196 schema:value 10.1038/hr.2014.30
197 rdf:type schema:PropertyValue
198 Nfeb4615c6c3b4e8dad27c596751b8b75 rdf:first sg:person.0703420760.35
199 rdf:rest N72b66e93f4054934aed3a58a67d8a9b3
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
204 schema:name Cardiorespiratory Medicine and Haematology
205 rdf:type schema:DefinedTerm
206 sg:journal.1313717 schema:issn 0916-9636
207 1348-4214
208 schema:name Hypertension Research
209 schema:publisher Springer Nature
210 rdf:type schema:Periodical
211 sg:person.01016276136.59 schema:affiliation grid-institutes:grid.272458.e
212 schema:familyName Mitsuhashi
213 schema:givenName Kazuteru
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016276136.59
215 rdf:type schema:Person
216 sg:person.01103041632.87 schema:affiliation grid-institutes:grid.272458.e
217 schema:familyName Yamazaki
218 schema:givenName Masahiro
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87
220 rdf:type schema:Person
221 sg:person.01125266650.19 schema:affiliation grid-institutes:None
222 schema:familyName Yoshioka
223 schema:givenName Keiji
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125266650.19
225 rdf:type schema:Person
226 sg:person.01162763674.43 schema:affiliation grid-institutes:grid.272458.e
227 schema:familyName Hasegawa
228 schema:givenName Goji
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43
230 rdf:type schema:Person
231 sg:person.01261542332.81 schema:affiliation grid-institutes:grid.272458.e
232 schema:familyName Okada
233 schema:givenName Hiroshi
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261542332.81
235 rdf:type schema:Person
236 sg:person.01314057106.13 schema:affiliation grid-institutes:grid.416591.e
237 schema:familyName Tanaka
238 schema:givenName Yoshimitsu
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314057106.13
240 rdf:type schema:Person
241 sg:person.016357516722.38 schema:affiliation grid-institutes:grid.272458.e
242 schema:familyName Fukui
243 schema:givenName Michiaki
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38
245 rdf:type schema:Person
246 sg:person.0662513645.13 schema:affiliation grid-institutes:grid.416591.e
247 schema:familyName Fukuda
248 schema:givenName Yukiko
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662513645.13
250 rdf:type schema:Person
251 sg:person.0677442163.58 schema:affiliation grid-institutes:grid.272458.e
252 schema:familyName Nakamura
253 schema:givenName Naoto
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58
255 rdf:type schema:Person
256 sg:person.0703420760.35 schema:affiliation grid-institutes:grid.272458.e
257 schema:familyName Tanaka
258 schema:givenName Muhei
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35
260 rdf:type schema:Person
261 sg:pub.10.1038/hr.2012.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030679161
262 https://doi.org/10.1038/hr.2012.207
263 rdf:type schema:CreativeWork
264 sg:pub.10.1038/sj.jhh.1000998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033572649
265 https://doi.org/10.1038/sj.jhh.1000998
266 rdf:type schema:CreativeWork
267 sg:pub.10.1038/sj.jhh.1002093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005374653
268 https://doi.org/10.1038/sj.jhh.1002093
269 rdf:type schema:CreativeWork
270 sg:pub.10.1038/sj.jhh.1002209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046954653
271 https://doi.org/10.1038/sj.jhh.1002209
272 rdf:type schema:CreativeWork
273 grid-institutes:None schema:alternateName Yoshioka Diabetes Clinic, Osaka, Moriguchi, Japan
274 schema:name Yoshioka Diabetes Clinic, Osaka, Moriguchi, Japan
275 rdf:type schema:Organization
276 grid-institutes:grid.272458.e schema:alternateName Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
277 schema:name Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
278 rdf:type schema:Organization
279 grid-institutes:grid.416591.e schema:alternateName Department of Diabetes and Endocrine Diseases, Matsushita Memorial Hospital, Osaka, Moriguchi, Japan
280 schema:name Department of Diabetes and Endocrine Diseases, Matsushita Memorial Hospital, Osaka, Moriguchi, Japan
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...