Visit-to-visit variability in systolic blood pressure is a novel risk factor for the progression of coronary artery calcification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-04

AUTHORS

Hiroshi Okada, Michiaki Fukui, Muhei Tanaka, Shinobu Matsumoto, Yusuke Mineoka, Naoko Nakanishi, Ki-ichiro Tomiyasu, Koji Nakano, Goji Hasegawa, Naoto Nakamura

ABSTRACT

Recent studies have suggested that variability in the systolic blood pressure (SBP) is a risk factor for cardiovascular disease (CVD). The aim of this study was to investigate the relationship between variability in the SBP and the progression of coronary artery calcification (CAC), which is a useful marker for CVD. We measured SBP in 164 consecutive patients at every visit over the course of a year and calculated the coefficient of variation and s.d. of the SBP. We performed a follow-up study using multislice computed tomography to assess the progression of the CAC score, the mean interval of which was 3.93±1.36 years. We then evaluated the relationship between variability in the SBP and progression of the CAC score. The coefficient of variation for the SBP correlated positively with the progression of the CAC score (r=0.4382, P<0.0001). Multiple regression analysis demonstrated that the coefficient of variation of the SBP (β=0.3826, P<0.0001) was independently associated with the progression of the CAC score. The visit-to-visit variability in SBP could be a novel risk factor for the progression of CAC. More... »

PAGES

996-999

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hr.2013.66

DOI

http://dx.doi.org/10.1038/hr.2013.66

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050704833

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23823173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcinosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okada", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01261542332.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261542332.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Michiaki", 
        "id": "sg:person.016357516722.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Muhei", 
        "id": "sg:person.0703420760.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumoto", 
        "givenName": "Shinobu", 
        "id": "sg:person.01174776636.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174776636.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mineoka", 
        "givenName": "Yusuke", 
        "id": "sg:person.01157365622.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157365622.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakanishi", 
        "givenName": "Naoko", 
        "id": "sg:person.0605350767.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605350767.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomiyasu", 
        "givenName": "Ki-ichiro", 
        "id": "sg:person.0754655343.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754655343.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakano", 
        "givenName": "Koji", 
        "id": "sg:person.01115757546.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115757546.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Goji", 
        "id": "sg:person.01162763674.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Naoto", 
        "id": "sg:person.0677442163.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11906-012-0290-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026398825", 
          "https://doi.org/10.1007/s11906-012-0290-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-04", 
    "datePublishedReg": "2013-07-04", 
    "description": "Recent studies have suggested that variability in the systolic blood pressure (SBP) is a risk factor for cardiovascular disease (CVD). The aim of this study was to investigate the relationship between variability in the SBP and the progression of coronary artery calcification (CAC), which is a useful marker for CVD. We measured SBP in 164 consecutive patients at every visit over the course of a year and calculated the coefficient of variation and s.d. of the SBP. We performed a follow-up study using multislice computed tomography to assess the progression of the CAC score, the mean interval of which was 3.93\u00b11.36 years. We then evaluated the relationship between variability in the SBP and progression of the CAC score. The coefficient of variation for the SBP correlated positively with the progression of the CAC score (r=0.4382, P<0.0001). Multiple regression analysis demonstrated that the coefficient of variation of the SBP (\u03b2=0.3826, P<0.0001) was independently associated with the progression of the CAC score. The visit-to-visit variability in SBP could be a novel risk factor for the progression of CAC.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/hr.2013.66", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "systolic blood pressure", 
      "coronary artery calcification", 
      "novel risk factors", 
      "CAC score", 
      "risk factors", 
      "cardiovascular disease", 
      "artery calcification", 
      "blood pressure", 
      "visit variability", 
      "progression of CAC", 
      "consecutive patients", 
      "mean interval", 
      "useful marker", 
      "progression", 
      "multiple regression analysis", 
      "coefficient of variation", 
      "regression analysis", 
      "scores", 
      "calcification", 
      "visits", 
      "Recent studies", 
      "patients", 
      "years", 
      "follow", 
      "factors", 
      "disease", 
      "multislice", 
      "study", 
      "tomography", 
      "markers", 
      "pressure", 
      "aim", 
      "course", 
      "intervals", 
      "variability", 
      "relationship", 
      "analysis", 
      "variation", 
      "coefficient"
    ], 
    "name": "Visit-to-visit variability in systolic blood pressure is a novel risk factor for the progression of coronary artery calcification", 
    "pagination": "996-999", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050704833"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hr.2013.66"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23823173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hr.2013.66", 
      "https://app.dimensions.ai/details/publication/pub.1050704833"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/hr.2013.66"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      22 PREDICATES      78 URIs      69 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hr.2013.66 schema:about N06987c4516284b869355e7f6c7eacc82
2 N0b8f4aefd94a49ba87aa452f016e4fed
3 N67bb63a7b54a43a8b031c79c327d600e
4 N856e4c102acf4606ae2293c5e02ddbf0
5 N8d302e6e5e55416a8fa4c796b13e869f
6 N9b68901f0992415dae1694c80eb01f4d
7 Nacb0cf806a0e44599ab25779bb9b15fc
8 Naf259cd7acc4419a9b6e34626d4cde72
9 Nb5abcbf32ea6407c9fe79b117cedd165
10 Nb5efd37da12b465a83e5132fc8bcea83
11 Nd73d5ae5d0224333a32d8aaee523f680
12 Ne8d2f2b5f1b64752a3c9d9e56e340342
13 anzsrc-for:11
14 anzsrc-for:1102
15 schema:author N9de7ad18082644e28c4893d1e730b3fd
16 schema:citation sg:pub.10.1007/s11906-012-0290-7
17 schema:datePublished 2013-07-04
18 schema:datePublishedReg 2013-07-04
19 schema:description Recent studies have suggested that variability in the systolic blood pressure (SBP) is a risk factor for cardiovascular disease (CVD). The aim of this study was to investigate the relationship between variability in the SBP and the progression of coronary artery calcification (CAC), which is a useful marker for CVD. We measured SBP in 164 consecutive patients at every visit over the course of a year and calculated the coefficient of variation and s.d. of the SBP. We performed a follow-up study using multislice computed tomography to assess the progression of the CAC score, the mean interval of which was 3.93±1.36 years. We then evaluated the relationship between variability in the SBP and progression of the CAC score. The coefficient of variation for the SBP correlated positively with the progression of the CAC score (r=0.4382, P<0.0001). Multiple regression analysis demonstrated that the coefficient of variation of the SBP (β=0.3826, P<0.0001) was independently associated with the progression of the CAC score. The visit-to-visit variability in SBP could be a novel risk factor for the progression of CAC.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Ncdbb6b0ace66436c8a49a037769a10c6
24 Nd7fb31f73f3f4984b69775bb7f62a24d
25 sg:journal.1313717
26 schema:keywords CAC score
27 Recent studies
28 aim
29 analysis
30 artery calcification
31 blood pressure
32 calcification
33 cardiovascular disease
34 coefficient
35 coefficient of variation
36 consecutive patients
37 coronary artery calcification
38 course
39 disease
40 factors
41 follow
42 intervals
43 markers
44 mean interval
45 multiple regression analysis
46 multislice
47 novel risk factors
48 patients
49 pressure
50 progression
51 progression of CAC
52 regression analysis
53 relationship
54 risk factors
55 scores
56 study
57 systolic blood pressure
58 tomography
59 useful marker
60 variability
61 variation
62 visit variability
63 visits
64 years
65 schema:name Visit-to-visit variability in systolic blood pressure is a novel risk factor for the progression of coronary artery calcification
66 schema:pagination 996-999
67 schema:productId N28109a0433524284a8b64b954cf6f5b2
68 N60f0b43448da4315930638c40467abd5
69 Nc32fcea03a3745539601fabf235a4175
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050704833
71 https://doi.org/10.1038/hr.2013.66
72 schema:sdDatePublished 2021-11-01T18:19
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N74c44001e56a4124bbadcef70be6d8c4
75 schema:url https://doi.org/10.1038/hr.2013.66
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N06987c4516284b869355e7f6c7eacc82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Disease Progression
81 rdf:type schema:DefinedTerm
82 N0b8f4aefd94a49ba87aa452f016e4fed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Aged
84 rdf:type schema:DefinedTerm
85 N28109a0433524284a8b64b954cf6f5b2 schema:name pubmed_id
86 schema:value 23823173
87 rdf:type schema:PropertyValue
88 N2c5785e4b2da45b7857fa5948cf22978 rdf:first sg:person.016357516722.38
89 rdf:rest N66777b24b4974b95828fe77da0bfc106
90 N60f0b43448da4315930638c40467abd5 schema:name doi
91 schema:value 10.1038/hr.2013.66
92 rdf:type schema:PropertyValue
93 N66777b24b4974b95828fe77da0bfc106 rdf:first sg:person.0703420760.35
94 rdf:rest Nd477eacd34f9422cab11294e375379cd
95 N67bb63a7b54a43a8b031c79c327d600e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Blood Pressure
97 rdf:type schema:DefinedTerm
98 N74c44001e56a4124bbadcef70be6d8c4 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N856e4c102acf4606ae2293c5e02ddbf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Coronary Artery Disease
102 rdf:type schema:DefinedTerm
103 N8d302e6e5e55416a8fa4c796b13e869f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Male
105 rdf:type schema:DefinedTerm
106 N9b68901f0992415dae1694c80eb01f4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Middle Aged
108 rdf:type schema:DefinedTerm
109 N9de7ad18082644e28c4893d1e730b3fd rdf:first sg:person.01261542332.81
110 rdf:rest N2c5785e4b2da45b7857fa5948cf22978
111 Nacb0cf806a0e44599ab25779bb9b15fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Retrospective Studies
113 rdf:type schema:DefinedTerm
114 Naf259cd7acc4419a9b6e34626d4cde72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Female
116 rdf:type schema:DefinedTerm
117 Nb1bed0a9d57441a0bbfb2fd79e26e3cc rdf:first sg:person.0605350767.90
118 rdf:rest Nbf8cac2e0b84471a95b67c4719220dc7
119 Nb5abcbf32ea6407c9fe79b117cedd165 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Calcinosis
121 rdf:type schema:DefinedTerm
122 Nb5efd37da12b465a83e5132fc8bcea83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Aged, 80 and over
124 rdf:type schema:DefinedTerm
125 Nbf8cac2e0b84471a95b67c4719220dc7 rdf:first sg:person.0754655343.84
126 rdf:rest Ndc617482321849349f3a77dda231399c
127 Nc32fcea03a3745539601fabf235a4175 schema:name dimensions_id
128 schema:value pub.1050704833
129 rdf:type schema:PropertyValue
130 Ncdbb6b0ace66436c8a49a037769a10c6 schema:issueNumber 11
131 rdf:type schema:PublicationIssue
132 Ncfbaf11911d5434d87d9166ba00d0071 rdf:first sg:person.01162763674.43
133 rdf:rest Ne4ee62b3ba124d4981a383f7c47c6926
134 Nd477eacd34f9422cab11294e375379cd rdf:first sg:person.01174776636.88
135 rdf:rest Nff00d04f6fd2406b9daa831ff6696649
136 Nd73d5ae5d0224333a32d8aaee523f680 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 Nd7fb31f73f3f4984b69775bb7f62a24d schema:volumeNumber 36
140 rdf:type schema:PublicationVolume
141 Ndc617482321849349f3a77dda231399c rdf:first sg:person.01115757546.11
142 rdf:rest Ncfbaf11911d5434d87d9166ba00d0071
143 Ne4ee62b3ba124d4981a383f7c47c6926 rdf:first sg:person.0677442163.58
144 rdf:rest rdf:nil
145 Ne8d2f2b5f1b64752a3c9d9e56e340342 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Risk Factors
147 rdf:type schema:DefinedTerm
148 Nff00d04f6fd2406b9daa831ff6696649 rdf:first sg:person.01157365622.08
149 rdf:rest Nb1bed0a9d57441a0bbfb2fd79e26e3cc
150 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
151 schema:name Medical and Health Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
154 schema:name Cardiorespiratory Medicine and Haematology
155 rdf:type schema:DefinedTerm
156 sg:journal.1313717 schema:issn 0916-9636
157 1348-4214
158 schema:name Hypertension Research
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.01115757546.11 schema:affiliation grid-institutes:None
162 schema:familyName Nakano
163 schema:givenName Koji
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115757546.11
165 rdf:type schema:Person
166 sg:person.01157365622.08 schema:affiliation grid-institutes:grid.272458.e
167 schema:familyName Mineoka
168 schema:givenName Yusuke
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157365622.08
170 rdf:type schema:Person
171 sg:person.01162763674.43 schema:affiliation grid-institutes:grid.272458.e
172 schema:familyName Hasegawa
173 schema:givenName Goji
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43
175 rdf:type schema:Person
176 sg:person.01174776636.88 schema:affiliation grid-institutes:grid.272458.e
177 schema:familyName Matsumoto
178 schema:givenName Shinobu
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174776636.88
180 rdf:type schema:Person
181 sg:person.01261542332.81 schema:affiliation grid-institutes:grid.272458.e
182 schema:familyName Okada
183 schema:givenName Hiroshi
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261542332.81
185 rdf:type schema:Person
186 sg:person.016357516722.38 schema:affiliation grid-institutes:grid.272458.e
187 schema:familyName Fukui
188 schema:givenName Michiaki
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38
190 rdf:type schema:Person
191 sg:person.0605350767.90 schema:affiliation grid-institutes:grid.272458.e
192 schema:familyName Nakanishi
193 schema:givenName Naoko
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605350767.90
195 rdf:type schema:Person
196 sg:person.0677442163.58 schema:affiliation grid-institutes:grid.272458.e
197 schema:familyName Nakamura
198 schema:givenName Naoto
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58
200 rdf:type schema:Person
201 sg:person.0703420760.35 schema:affiliation grid-institutes:grid.272458.e
202 schema:familyName Tanaka
203 schema:givenName Muhei
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35
205 rdf:type schema:Person
206 sg:person.0754655343.84 schema:affiliation grid-institutes:None
207 schema:familyName Tomiyasu
208 schema:givenName Ki-ichiro
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754655343.84
210 rdf:type schema:Person
211 sg:pub.10.1007/s11906-012-0290-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026398825
212 https://doi.org/10.1007/s11906-012-0290-7
213 rdf:type schema:CreativeWork
214 grid-institutes:None schema:alternateName Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan
215 Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan
216 schema:name Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan
217 Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan
218 rdf:type schema:Organization
219 grid-institutes:grid.272458.e schema:alternateName Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
220 schema:name Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...