Visit-to-visit variability in systolic blood pressure is a novel risk factor for the progression of coronary artery calcification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-04

AUTHORS

Hiroshi Okada, Michiaki Fukui, Muhei Tanaka, Shinobu Matsumoto, Yusuke Mineoka, Naoko Nakanishi, Ki-ichiro Tomiyasu, Koji Nakano, Goji Hasegawa, Naoto Nakamura

ABSTRACT

Recent studies have suggested that variability in the systolic blood pressure (SBP) is a risk factor for cardiovascular disease (CVD). The aim of this study was to investigate the relationship between variability in the SBP and the progression of coronary artery calcification (CAC), which is a useful marker for CVD. We measured SBP in 164 consecutive patients at every visit over the course of a year and calculated the coefficient of variation and s.d. of the SBP. We performed a follow-up study using multislice computed tomography to assess the progression of the CAC score, the mean interval of which was 3.93±1.36 years. We then evaluated the relationship between variability in the SBP and progression of the CAC score. The coefficient of variation for the SBP correlated positively with the progression of the CAC score (r=0.4382, P<0.0001). Multiple regression analysis demonstrated that the coefficient of variation of the SBP (β=0.3826, P<0.0001) was independently associated with the progression of the CAC score. The visit-to-visit variability in SBP could be a novel risk factor for the progression of CAC. More... »

PAGES

996-999

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hr.2013.66

DOI

http://dx.doi.org/10.1038/hr.2013.66

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050704833

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23823173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcinosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okada", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01261542332.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261542332.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Michiaki", 
        "id": "sg:person.016357516722.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Muhei", 
        "id": "sg:person.0703420760.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumoto", 
        "givenName": "Shinobu", 
        "id": "sg:person.01174776636.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174776636.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mineoka", 
        "givenName": "Yusuke", 
        "id": "sg:person.01157365622.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157365622.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakanishi", 
        "givenName": "Naoko", 
        "id": "sg:person.0605350767.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605350767.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomiyasu", 
        "givenName": "Ki-ichiro", 
        "id": "sg:person.0754655343.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754655343.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakano", 
        "givenName": "Koji", 
        "id": "sg:person.01115757546.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115757546.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Goji", 
        "id": "sg:person.01162763674.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Naoto", 
        "id": "sg:person.0677442163.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11906-012-0290-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026398825", 
          "https://doi.org/10.1007/s11906-012-0290-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-04", 
    "datePublishedReg": "2013-07-04", 
    "description": "Recent studies have suggested that variability in the systolic blood pressure (SBP) is a risk factor for cardiovascular disease (CVD). The aim of this study was to investigate the relationship between variability in the SBP and the progression of coronary artery calcification (CAC), which is a useful marker for CVD. We measured SBP in 164 consecutive patients at every visit over the course of a year and calculated the coefficient of variation and s.d. of the SBP. We performed a follow-up study using multislice computed tomography to assess the progression of the CAC score, the mean interval of which was 3.93\u00b11.36 years. We then evaluated the relationship between variability in the SBP and progression of the CAC score. The coefficient of variation for the SBP correlated positively with the progression of the CAC score (r=0.4382, P<0.0001). Multiple regression analysis demonstrated that the coefficient of variation of the SBP (\u03b2=0.3826, P<0.0001) was independently associated with the progression of the CAC score. The visit-to-visit variability in SBP could be a novel risk factor for the progression of CAC.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/hr.2013.66", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "systolic blood pressure", 
      "coronary artery calcification", 
      "novel risk factors", 
      "CAC score", 
      "risk factors", 
      "cardiovascular disease", 
      "artery calcification", 
      "visit variability", 
      "blood pressure", 
      "progression of CAC", 
      "consecutive patients", 
      "mean interval", 
      "useful marker", 
      "progression", 
      "coefficient of variation", 
      "multiple regression analysis", 
      "regression analysis", 
      "scores", 
      "calcification", 
      "visits", 
      "Recent studies", 
      "patients", 
      "follow", 
      "years", 
      "factors", 
      "disease", 
      "multislice", 
      "study", 
      "tomography", 
      "markers", 
      "pressure", 
      "aim", 
      "course", 
      "intervals", 
      "variability", 
      "relationship", 
      "analysis", 
      "variation", 
      "coefficient"
    ], 
    "name": "Visit-to-visit variability in systolic blood pressure is a novel risk factor for the progression of coronary artery calcification", 
    "pagination": "996-999", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050704833"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hr.2013.66"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23823173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hr.2013.66", 
      "https://app.dimensions.ai/details/publication/pub.1050704833"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_600.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/hr.2013.66"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hr.2013.66'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      22 PREDICATES      78 URIs      69 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hr.2013.66 schema:about N05582b7fbb7e458cbfeb0361bf9432e2
2 N4d2076389e084b61b1724342ca967442
3 N5365f1698a86496f893afb4600855eaf
4 N75d7567260034c5ab822e04d891c3cb8
5 N767613e5a74247049e48b3e3af9e8885
6 N773cece78f9d4e0bb2197cfaa6104652
7 N81eeb21524c7446b911b66e1c7fce905
8 N8c1b7bb5a6ce497c8ead7e5355943643
9 N8c98f95579c94e8d8ccc35b6d1f0e527
10 Na3789ae60bc24d84a626fd09028d2bf3
11 Na48e619748bb45a6aed3beb11b1f9461
12 Nda5c989cccb141b0a6268537f42aa4d2
13 anzsrc-for:11
14 anzsrc-for:1102
15 schema:author Na7e53f200c0046ada5a431d02724d233
16 schema:citation sg:pub.10.1007/s11906-012-0290-7
17 schema:datePublished 2013-07-04
18 schema:datePublishedReg 2013-07-04
19 schema:description Recent studies have suggested that variability in the systolic blood pressure (SBP) is a risk factor for cardiovascular disease (CVD). The aim of this study was to investigate the relationship between variability in the SBP and the progression of coronary artery calcification (CAC), which is a useful marker for CVD. We measured SBP in 164 consecutive patients at every visit over the course of a year and calculated the coefficient of variation and s.d. of the SBP. We performed a follow-up study using multislice computed tomography to assess the progression of the CAC score, the mean interval of which was 3.93±1.36 years. We then evaluated the relationship between variability in the SBP and progression of the CAC score. The coefficient of variation for the SBP correlated positively with the progression of the CAC score (r=0.4382, P<0.0001). Multiple regression analysis demonstrated that the coefficient of variation of the SBP (β=0.3826, P<0.0001) was independently associated with the progression of the CAC score. The visit-to-visit variability in SBP could be a novel risk factor for the progression of CAC.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N30917a7724ef4f70baa0142ddcd4f3d7
24 N896de62f93a14851921cdfd9b51626b4
25 sg:journal.1313717
26 schema:keywords CAC score
27 Recent studies
28 aim
29 analysis
30 artery calcification
31 blood pressure
32 calcification
33 cardiovascular disease
34 coefficient
35 coefficient of variation
36 consecutive patients
37 coronary artery calcification
38 course
39 disease
40 factors
41 follow
42 intervals
43 markers
44 mean interval
45 multiple regression analysis
46 multislice
47 novel risk factors
48 patients
49 pressure
50 progression
51 progression of CAC
52 regression analysis
53 relationship
54 risk factors
55 scores
56 study
57 systolic blood pressure
58 tomography
59 useful marker
60 variability
61 variation
62 visit variability
63 visits
64 years
65 schema:name Visit-to-visit variability in systolic blood pressure is a novel risk factor for the progression of coronary artery calcification
66 schema:pagination 996-999
67 schema:productId N57ab5922959347f7bcfe56c0d73199ef
68 N59d3c40cb8d7488c88fd98ffeab2905e
69 N64f75bccf3674694970ef5ca3f5793b0
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050704833
71 https://doi.org/10.1038/hr.2013.66
72 schema:sdDatePublished 2022-01-01T18:30
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nf8cc454e99c94b38ac65474a205ed7f4
75 schema:url https://doi.org/10.1038/hr.2013.66
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0405cb36ba4b4d4b9ae77d37ed4b5a7b rdf:first sg:person.01157365622.08
80 rdf:rest Na90010a46cdf4a1b88fdc25b5198fc30
81 N05582b7fbb7e458cbfeb0361bf9432e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Retrospective Studies
83 rdf:type schema:DefinedTerm
84 N1a1def8e35c0444abdea90565b1c49a2 rdf:first sg:person.016357516722.38
85 rdf:rest N79485d8ab3b448cf887a6ab018aee019
86 N26a96fea017c463f83b5a95b3be603c5 rdf:first sg:person.01174776636.88
87 rdf:rest N0405cb36ba4b4d4b9ae77d37ed4b5a7b
88 N30917a7724ef4f70baa0142ddcd4f3d7 schema:volumeNumber 36
89 rdf:type schema:PublicationVolume
90 N44dadb5a200e4bb1bf1ba862b9dbb77c rdf:first sg:person.01115757546.11
91 rdf:rest Ndb6e3f5dae6744b6acbb69128994551f
92 N4d2076389e084b61b1724342ca967442 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Male
94 rdf:type schema:DefinedTerm
95 N5365f1698a86496f893afb4600855eaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Middle Aged
97 rdf:type schema:DefinedTerm
98 N57ab5922959347f7bcfe56c0d73199ef schema:name doi
99 schema:value 10.1038/hr.2013.66
100 rdf:type schema:PropertyValue
101 N59d3c40cb8d7488c88fd98ffeab2905e schema:name pubmed_id
102 schema:value 23823173
103 rdf:type schema:PropertyValue
104 N64f75bccf3674694970ef5ca3f5793b0 schema:name dimensions_id
105 schema:value pub.1050704833
106 rdf:type schema:PropertyValue
107 N75d7567260034c5ab822e04d891c3cb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Blood Pressure
109 rdf:type schema:DefinedTerm
110 N767613e5a74247049e48b3e3af9e8885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Humans
112 rdf:type schema:DefinedTerm
113 N76db9823e38e44fdbb0d29dd1b3afe31 rdf:first sg:person.0677442163.58
114 rdf:rest rdf:nil
115 N773cece78f9d4e0bb2197cfaa6104652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Disease Progression
117 rdf:type schema:DefinedTerm
118 N79485d8ab3b448cf887a6ab018aee019 rdf:first sg:person.0703420760.35
119 rdf:rest N26a96fea017c463f83b5a95b3be603c5
120 N81eeb21524c7446b911b66e1c7fce905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Calcinosis
122 rdf:type schema:DefinedTerm
123 N896de62f93a14851921cdfd9b51626b4 schema:issueNumber 11
124 rdf:type schema:PublicationIssue
125 N8c1b7bb5a6ce497c8ead7e5355943643 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Aged
127 rdf:type schema:DefinedTerm
128 N8c98f95579c94e8d8ccc35b6d1f0e527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Coronary Artery Disease
130 rdf:type schema:DefinedTerm
131 Na3789ae60bc24d84a626fd09028d2bf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Aged, 80 and over
133 rdf:type schema:DefinedTerm
134 Na48e619748bb45a6aed3beb11b1f9461 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Risk Factors
136 rdf:type schema:DefinedTerm
137 Na7e53f200c0046ada5a431d02724d233 rdf:first sg:person.01261542332.81
138 rdf:rest N1a1def8e35c0444abdea90565b1c49a2
139 Na90010a46cdf4a1b88fdc25b5198fc30 rdf:first sg:person.0605350767.90
140 rdf:rest Nfae172c48f5a4dc996f5a788c19a15f2
141 Nda5c989cccb141b0a6268537f42aa4d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Female
143 rdf:type schema:DefinedTerm
144 Ndb6e3f5dae6744b6acbb69128994551f rdf:first sg:person.01162763674.43
145 rdf:rest N76db9823e38e44fdbb0d29dd1b3afe31
146 Nf8cc454e99c94b38ac65474a205ed7f4 schema:name Springer Nature - SN SciGraph project
147 rdf:type schema:Organization
148 Nfae172c48f5a4dc996f5a788c19a15f2 rdf:first sg:person.0754655343.84
149 rdf:rest N44dadb5a200e4bb1bf1ba862b9dbb77c
150 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
151 schema:name Medical and Health Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
154 schema:name Cardiorespiratory Medicine and Haematology
155 rdf:type schema:DefinedTerm
156 sg:journal.1313717 schema:issn 0916-9636
157 1348-4214
158 schema:name Hypertension Research
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.01115757546.11 schema:affiliation grid-institutes:None
162 schema:familyName Nakano
163 schema:givenName Koji
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115757546.11
165 rdf:type schema:Person
166 sg:person.01157365622.08 schema:affiliation grid-institutes:grid.272458.e
167 schema:familyName Mineoka
168 schema:givenName Yusuke
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157365622.08
170 rdf:type schema:Person
171 sg:person.01162763674.43 schema:affiliation grid-institutes:grid.272458.e
172 schema:familyName Hasegawa
173 schema:givenName Goji
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43
175 rdf:type schema:Person
176 sg:person.01174776636.88 schema:affiliation grid-institutes:grid.272458.e
177 schema:familyName Matsumoto
178 schema:givenName Shinobu
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174776636.88
180 rdf:type schema:Person
181 sg:person.01261542332.81 schema:affiliation grid-institutes:grid.272458.e
182 schema:familyName Okada
183 schema:givenName Hiroshi
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261542332.81
185 rdf:type schema:Person
186 sg:person.016357516722.38 schema:affiliation grid-institutes:grid.272458.e
187 schema:familyName Fukui
188 schema:givenName Michiaki
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38
190 rdf:type schema:Person
191 sg:person.0605350767.90 schema:affiliation grid-institutes:grid.272458.e
192 schema:familyName Nakanishi
193 schema:givenName Naoko
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605350767.90
195 rdf:type schema:Person
196 sg:person.0677442163.58 schema:affiliation grid-institutes:grid.272458.e
197 schema:familyName Nakamura
198 schema:givenName Naoto
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58
200 rdf:type schema:Person
201 sg:person.0703420760.35 schema:affiliation grid-institutes:grid.272458.e
202 schema:familyName Tanaka
203 schema:givenName Muhei
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35
205 rdf:type schema:Person
206 sg:person.0754655343.84 schema:affiliation grid-institutes:None
207 schema:familyName Tomiyasu
208 schema:givenName Ki-ichiro
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754655343.84
210 rdf:type schema:Person
211 sg:pub.10.1007/s11906-012-0290-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026398825
212 https://doi.org/10.1007/s11906-012-0290-7
213 rdf:type schema:CreativeWork
214 grid-institutes:None schema:alternateName Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan
215 Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan
216 schema:name Department of Cardiology, Yamashiro Public Hospital, Kyoto, Japan
217 Department of Endocrinology and Metabolism, Yamashiro Public Hospital, Kyoto, Japan
218 rdf:type schema:Organization
219 grid-institutes:grid.272458.e schema:alternateName Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
220 schema:name Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...