Toe–brachial index is associated more strongly with albuminuria or glomerular filtration rate than ankle–brachial index in patients with type 2 ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-02-16

AUTHORS

Michiaki Fukui, Muhei Tanaka, Masahide Hamaguchi, Takafumi Senmaru, Kazumi Sakabe, Mai Asano, Masahiro Yamazaki, Goji Hasegawa, Saeko Imai, Naoto Nakamura

ABSTRACT

The aim of this study was to investigate whether toe–brachial index (TBI) is more strongly associated with albuminuria or estimated glomerular filtration rate (eGFR) than ankle–brachial index (ABI), and thus is a more suitable tool for evaluating the association between peripheral artery disease (PAD) and diabetic nephropathy than ABI in patients with type 2 diabetes. We evaluated the relationships between ABI or TBI and the degree of urinary albumin excretion or eGFR, as well as the major cardiovascular risk factors, in 390 patients with type 2 diabetes. Furthermore, we compared the area under the receiver–operator characteristic curve (AUC) of TBI or ABI for albuminuria or chronic kidney disease (CKD). Low-density lipoprotein cholesterol was negatively associated with ABI. Age and duration of diabetes were negatively associated with TBI, and diastolic blood pressure and high-density lipoprotein cholesterol were positively associated with TBI. Log (urinary albumin excretion) was associated more strongly with TBI (r=−0.265, P<0.0001) than with ABI (r=−0.132, P=0.0111), and eGFR was positively associated with TBI (r=0.195, P=0.0002) but not with ABI (r=0.023, P=0.6571). The AUCs of TBI for albuminuria (P=0.0002) and CKD (P=0.0322) were significantly greater than those of ABI. In conclusion, TBI is associated more strongly with albuminuria and eGFR than ABI in patients with type 2 diabetes. Our study suggests that TBI may be a more suitable tool for evaluating the association between PAD and diabetic nephropathy than ABI in patients with type 2 diabetes. More... »

PAGES

745-749

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hr.2012.16

DOI

http://dx.doi.org/10.1038/hr.2012.16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009763599

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22336768


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Albuminuria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ankle Brachial Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol, LDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetic Nephropathies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glomerular Filtration Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peripheral Arterial Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Michiaki", 
        "id": "sg:person.016357516722.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Muhei", 
        "id": "sg:person.0703420760.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Immunology Frontier Research Center at Osaka University, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Immunology Frontier Research Center at Osaka University, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamaguchi", 
        "givenName": "Masahide", 
        "id": "sg:person.01013261701.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013261701.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senmaru", 
        "givenName": "Takafumi", 
        "id": "sg:person.0652364632.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652364632.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakabe", 
        "givenName": "Kazumi", 
        "id": "sg:person.01343727570.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343727570.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asano", 
        "givenName": "Mai", 
        "id": "sg:person.01077516505.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077516505.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazaki", 
        "givenName": "Masahiro", 
        "id": "sg:person.01103041632.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Goji", 
        "id": "sg:person.01162763674.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Nutrition, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261455.1", 
          "name": [
            "Department of Clinical Nutrition, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imai", 
        "givenName": "Saeko", 
        "id": "sg:person.0601451237.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451237.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Naoto", 
        "id": "sg:person.0677442163.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00404070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006007384", 
          "https://doi.org/10.1007/bf00404070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2008.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043457749", 
          "https://doi.org/10.1038/hr.2008.28"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02-16", 
    "datePublishedReg": "2012-02-16", 
    "description": "The aim of this study was to investigate whether toe\u2013brachial index (TBI) is more strongly associated with albuminuria or estimated glomerular filtration rate (eGFR) than ankle\u2013brachial index (ABI), and thus is a more suitable tool for evaluating the association between peripheral artery disease (PAD) and diabetic nephropathy than ABI in patients with type 2 diabetes. We evaluated the relationships between ABI or TBI and the degree of urinary albumin excretion or eGFR, as well as the major cardiovascular risk factors, in 390 patients with type 2 diabetes. Furthermore, we compared the area under the receiver\u2013operator characteristic curve (AUC) of TBI or ABI for albuminuria or chronic kidney disease (CKD). Low-density lipoprotein cholesterol was negatively associated with ABI. Age and duration of diabetes were negatively associated with TBI, and diastolic blood pressure and high-density lipoprotein cholesterol were positively associated with TBI. Log (urinary albumin excretion) was associated more strongly with TBI (r=\u22120.265, P<0.0001) than with ABI (r=\u22120.132, P=0.0111), and eGFR was positively associated with TBI (r=0.195, P=0.0002) but not with ABI (r=0.023, P=0.6571). The AUCs of TBI for albuminuria (P=0.0002) and CKD (P=0.0322) were significantly greater than those of ABI. In conclusion, TBI is associated more strongly with albuminuria and eGFR than ABI in patients with type 2 diabetes. Our study suggests that TBI may be a more suitable tool for evaluating the association between PAD and diabetic nephropathy than ABI in patients with type 2 diabetes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/hr.2012.16", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "toe-brachial index", 
      "ankle-brachial index", 
      "type 2 diabetes", 
      "peripheral artery disease", 
      "chronic kidney disease", 
      "glomerular filtration rate", 
      "diabetic nephropathy", 
      "lipoprotein cholesterol", 
      "filtration rate", 
      "major cardiovascular risk factors", 
      "low-density lipoprotein cholesterol", 
      "high-density lipoprotein cholesterol", 
      "urinary albumin excretion", 
      "cardiovascular risk factors", 
      "duration of diabetes", 
      "diastolic blood pressure", 
      "receiver operator characteristic curve", 
      "albumin excretion", 
      "artery disease", 
      "blood pressure", 
      "kidney disease", 
      "risk factors", 
      "albuminuria", 
      "diabetes", 
      "patients", 
      "EGFR", 
      "nephropathy", 
      "characteristic curve", 
      "disease", 
      "cholesterol", 
      "association", 
      "index", 
      "excretion", 
      "AUC", 
      "age", 
      "study", 
      "duration", 
      "rate", 
      "conclusion", 
      "suitable tool", 
      "aim", 
      "factors", 
      "pressure", 
      "tool", 
      "relationship", 
      "degree", 
      "curves", 
      "area", 
      "logs"
    ], 
    "name": "Toe\u2013brachial index is associated more strongly with albuminuria or glomerular filtration rate than ankle\u2013brachial index in patients with type 2 diabetes", 
    "pagination": "745-749", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009763599"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hr.2012.16"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22336768"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hr.2012.16", 
      "https://app.dimensions.ai/details/publication/pub.1009763599"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_577.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/hr.2012.16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hr.2012.16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hr.2012.16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hr.2012.16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hr.2012.16'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      90 URIs      80 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hr.2012.16 schema:about N01edfd74313940e6820064a3e8884b6a
2 N05cda184090940ab85498a96efbfa411
3 N0f50aff674d8451e85afe8ce843dee93
4 N15c8b2184444464395d601d072d42d08
5 N187ed557cb5243699dd35bc799f8ed45
6 N315743af2126464a8b6975a75391e5b6
7 N3479d8b21e634c05b192077c82cfd404
8 N442966079a6c4c0eb9c8ad0a36f29cd6
9 N863c53a24dc54aa58cc2826e779bfc43
10 N8980b6af2841427daa05386ea0f69051
11 N93ddcae59fbd4f30b264be4448b57fd9
12 Ndea5ebc66b0a4c75840f18397bfae671
13 Nf059139c10c944b88ed595a2fafdce9a
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author N3f6b999e505048568fd56c3aec425557
17 schema:citation sg:pub.10.1007/bf00404070
18 sg:pub.10.1038/hr.2008.28
19 schema:datePublished 2012-02-16
20 schema:datePublishedReg 2012-02-16
21 schema:description The aim of this study was to investigate whether toe–brachial index (TBI) is more strongly associated with albuminuria or estimated glomerular filtration rate (eGFR) than ankle–brachial index (ABI), and thus is a more suitable tool for evaluating the association between peripheral artery disease (PAD) and diabetic nephropathy than ABI in patients with type 2 diabetes. We evaluated the relationships between ABI or TBI and the degree of urinary albumin excretion or eGFR, as well as the major cardiovascular risk factors, in 390 patients with type 2 diabetes. Furthermore, we compared the area under the receiver–operator characteristic curve (AUC) of TBI or ABI for albuminuria or chronic kidney disease (CKD). Low-density lipoprotein cholesterol was negatively associated with ABI. Age and duration of diabetes were negatively associated with TBI, and diastolic blood pressure and high-density lipoprotein cholesterol were positively associated with TBI. Log (urinary albumin excretion) was associated more strongly with TBI (r=−0.265, P<0.0001) than with ABI (r=−0.132, P=0.0111), and eGFR was positively associated with TBI (r=0.195, P=0.0002) but not with ABI (r=0.023, P=0.6571). The AUCs of TBI for albuminuria (P=0.0002) and CKD (P=0.0322) were significantly greater than those of ABI. In conclusion, TBI is associated more strongly with albuminuria and eGFR than ABI in patients with type 2 diabetes. Our study suggests that TBI may be a more suitable tool for evaluating the association between PAD and diabetic nephropathy than ABI in patients with type 2 diabetes.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N6313cc1b20fb42539847942893627546
26 Nc9bcdcf54217403886e409a549c51f62
27 sg:journal.1313717
28 schema:keywords AUC
29 EGFR
30 age
31 aim
32 albumin excretion
33 albuminuria
34 ankle-brachial index
35 area
36 artery disease
37 association
38 blood pressure
39 cardiovascular risk factors
40 characteristic curve
41 cholesterol
42 chronic kidney disease
43 conclusion
44 curves
45 degree
46 diabetes
47 diabetic nephropathy
48 diastolic blood pressure
49 disease
50 duration
51 duration of diabetes
52 excretion
53 factors
54 filtration rate
55 glomerular filtration rate
56 high-density lipoprotein cholesterol
57 index
58 kidney disease
59 lipoprotein cholesterol
60 logs
61 low-density lipoprotein cholesterol
62 major cardiovascular risk factors
63 nephropathy
64 patients
65 peripheral artery disease
66 pressure
67 rate
68 receiver operator characteristic curve
69 relationship
70 risk factors
71 study
72 suitable tool
73 toe-brachial index
74 tool
75 type 2 diabetes
76 urinary albumin excretion
77 schema:name Toe–brachial index is associated more strongly with albuminuria or glomerular filtration rate than ankle–brachial index in patients with type 2 diabetes
78 schema:pagination 745-749
79 schema:productId N337243a845e441e0b55cdecde284a128
80 N949b62a7dff6449a83bffbae9158562c
81 Nf0245181000748648400f2fa0490e49b
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009763599
83 https://doi.org/10.1038/hr.2012.16
84 schema:sdDatePublished 2022-05-10T10:02
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Na5ac213101c3437893c375ce890587c7
87 schema:url https://doi.org/10.1038/hr.2012.16
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N01edfd74313940e6820064a3e8884b6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Male
93 rdf:type schema:DefinedTerm
94 N05cda184090940ab85498a96efbfa411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Peripheral Arterial Disease
96 rdf:type schema:DefinedTerm
97 N0d81a2a197f64a88b2680dfa6eecfc7e rdf:first sg:person.0652364632.31
98 rdf:rest Nefeed6dd144148f6b4c390869f132d8e
99 N0f50aff674d8451e85afe8ce843dee93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name ROC Curve
101 rdf:type schema:DefinedTerm
102 N15c8b2184444464395d601d072d42d08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N187ed557cb5243699dd35bc799f8ed45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Albuminuria
107 rdf:type schema:DefinedTerm
108 N315743af2126464a8b6975a75391e5b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Diabetic Nephropathies
110 rdf:type schema:DefinedTerm
111 N337243a845e441e0b55cdecde284a128 schema:name dimensions_id
112 schema:value pub.1009763599
113 rdf:type schema:PropertyValue
114 N3479d8b21e634c05b192077c82cfd404 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Female
116 rdf:type schema:DefinedTerm
117 N3f6b999e505048568fd56c3aec425557 rdf:first sg:person.016357516722.38
118 rdf:rest Ne9104446d4054abe9a5cca565f444088
119 N442966079a6c4c0eb9c8ad0a36f29cd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cholesterol, LDL
121 rdf:type schema:DefinedTerm
122 N5569bac7a60f4cdcbce0eba723a46b6c rdf:first sg:person.01077516505.40
123 rdf:rest Nc4fea3f5428b48e08eb48e158992011f
124 N6313cc1b20fb42539847942893627546 schema:volumeNumber 35
125 rdf:type schema:PublicationVolume
126 N863c53a24dc54aa58cc2826e779bfc43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Middle Aged
128 rdf:type schema:DefinedTerm
129 N8980b6af2841427daa05386ea0f69051 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Glomerular Filtration Rate
131 rdf:type schema:DefinedTerm
132 N93ddcae59fbd4f30b264be4448b57fd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Diabetes Mellitus, Type 2
134 rdf:type schema:DefinedTerm
135 N949b62a7dff6449a83bffbae9158562c schema:name doi
136 schema:value 10.1038/hr.2012.16
137 rdf:type schema:PropertyValue
138 N972f9267c7ae461093b4ad0fe308150e rdf:first sg:person.0601451237.09
139 rdf:rest Nca46a3a23d924476b32d415fded9427b
140 Na5ac213101c3437893c375ce890587c7 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 Naad369ca3f67497cb07c8f80f4d7a1a8 rdf:first sg:person.01013261701.08
143 rdf:rest N0d81a2a197f64a88b2680dfa6eecfc7e
144 Nc4fea3f5428b48e08eb48e158992011f rdf:first sg:person.01103041632.87
145 rdf:rest Nfde86911b04745f9b841f6ac6bd0a0a5
146 Nc9bcdcf54217403886e409a549c51f62 schema:issueNumber 7
147 rdf:type schema:PublicationIssue
148 Nca46a3a23d924476b32d415fded9427b rdf:first sg:person.0677442163.58
149 rdf:rest rdf:nil
150 Ndea5ebc66b0a4c75840f18397bfae671 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aged
152 rdf:type schema:DefinedTerm
153 Ne9104446d4054abe9a5cca565f444088 rdf:first sg:person.0703420760.35
154 rdf:rest Naad369ca3f67497cb07c8f80f4d7a1a8
155 Nefeed6dd144148f6b4c390869f132d8e rdf:first sg:person.01343727570.28
156 rdf:rest N5569bac7a60f4cdcbce0eba723a46b6c
157 Nf0245181000748648400f2fa0490e49b schema:name pubmed_id
158 schema:value 22336768
159 rdf:type schema:PropertyValue
160 Nf059139c10c944b88ed595a2fafdce9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Ankle Brachial Index
162 rdf:type schema:DefinedTerm
163 Nfde86911b04745f9b841f6ac6bd0a0a5 rdf:first sg:person.01162763674.43
164 rdf:rest N972f9267c7ae461093b4ad0fe308150e
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
169 schema:name Clinical Sciences
170 rdf:type schema:DefinedTerm
171 sg:journal.1313717 schema:issn 0916-9636
172 1348-4214
173 schema:name Hypertension Research
174 schema:publisher Springer Nature
175 rdf:type schema:Periodical
176 sg:person.01013261701.08 schema:affiliation grid-institutes:grid.136593.b
177 schema:familyName Hamaguchi
178 schema:givenName Masahide
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013261701.08
180 rdf:type schema:Person
181 sg:person.01077516505.40 schema:affiliation grid-institutes:grid.272458.e
182 schema:familyName Asano
183 schema:givenName Mai
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077516505.40
185 rdf:type schema:Person
186 sg:person.01103041632.87 schema:affiliation grid-institutes:grid.272458.e
187 schema:familyName Yamazaki
188 schema:givenName Masahiro
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87
190 rdf:type schema:Person
191 sg:person.01162763674.43 schema:affiliation grid-institutes:grid.272458.e
192 schema:familyName Hasegawa
193 schema:givenName Goji
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43
195 rdf:type schema:Person
196 sg:person.01343727570.28 schema:affiliation grid-institutes:grid.272458.e
197 schema:familyName Sakabe
198 schema:givenName Kazumi
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343727570.28
200 rdf:type schema:Person
201 sg:person.016357516722.38 schema:affiliation grid-institutes:grid.272458.e
202 schema:familyName Fukui
203 schema:givenName Michiaki
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38
205 rdf:type schema:Person
206 sg:person.0601451237.09 schema:affiliation grid-institutes:grid.261455.1
207 schema:familyName Imai
208 schema:givenName Saeko
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601451237.09
210 rdf:type schema:Person
211 sg:person.0652364632.31 schema:affiliation grid-institutes:grid.272458.e
212 schema:familyName Senmaru
213 schema:givenName Takafumi
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652364632.31
215 rdf:type schema:Person
216 sg:person.0677442163.58 schema:affiliation grid-institutes:grid.272458.e
217 schema:familyName Nakamura
218 schema:givenName Naoto
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58
220 rdf:type schema:Person
221 sg:person.0703420760.35 schema:affiliation grid-institutes:grid.272458.e
222 schema:familyName Tanaka
223 schema:givenName Muhei
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35
225 rdf:type schema:Person
226 sg:pub.10.1007/bf00404070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006007384
227 https://doi.org/10.1007/bf00404070
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/hr.2008.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043457749
230 https://doi.org/10.1038/hr.2008.28
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.136593.b schema:alternateName Immunology Frontier Research Center at Osaka University, Osaka, Japan
233 schema:name Immunology Frontier Research Center at Osaka University, Osaka, Japan
234 rdf:type schema:Organization
235 grid-institutes:grid.261455.1 schema:alternateName Department of Clinical Nutrition, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
236 schema:name Department of Clinical Nutrition, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
237 rdf:type schema:Organization
238 grid-institutes:grid.272458.e schema:alternateName Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan
239 schema:name Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...