Genome triplication drove the diversification of Brassica plants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05-21

AUTHORS

Feng Cheng, Jian Wu, Xiaowu Wang

ABSTRACT

The genus Brassica belongs to the plant family Brassicaceae, which includes many important crop species that are used as oilseed, condiments, or vegetables throughout the world. Brassica plants comprise many diverse species, and each species contains rich morphotypes showing extreme traits. Brassica species experienced an extra whole genome triplication (WGT) event compared with the model plant Arabidopsis thaliana. Whole genome sequencing of the Brassica species Brassica rapa, Brassica oleracea and others demonstrated that WGT plays an important role in the speciation and morphotype diversification of Brassica plants. Comparative genomic analysis based on the genome sequences of B. rapa and A. thaliana clearly identified the WGT event and further demonstrated that the translocated Proto-Calepine Karyotype (tPCK, n=7) was the diploid ancestor of the three subgenomes in B. rapa. Following WGT, subsequent extensive genome fractionation, block reshuffling and chromosome reduction accompanied by paleocentromere descent from the three tPCK subgenomes during the rediploidization process produced stable diploid species. Genomic rearrangement of the diploid species and their hybridization then contributed to Brassica speciation. The subgenome dominance effect and biased gene retention, such as the over-retention of auxin-related genes after WGT, promoted functional gene evolution and thus propelled the expansion of rich morphotypes in the Brassica species. In conclusion, the WGT event initiated subsequent genomic and gene-level evolution, which further drove Brassica speciation and created rich morphotypes in each species. More... »

PAGES

14024

References to SciGraph publications

  • 2012-08-28. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa in BMC PLANT BIOLOGY
  • 2008-03-03. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes in BMC GENOMICS
  • 2013-10-15. Functional Divergence and Evolutionary Dynamics of the Putative AAAP Gene Family in Brassica rapa in PLANT MOLECULAR BIOLOGY REPORTER
  • 2013-10-13. Association of molecular markers derived from the BrCRISTO1 gene with prolycopene-enriched orange-colored leaves in Brassica rapa in THEORETICAL AND APPLIED GENETICS
  • 2014-05-23. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes in NATURE COMMUNICATIONS
  • 2011-08-07. The genome of the extremophile crucifer Thellungiella parvula in NATURE GENETICS
  • 2006-06-19. Brassicaceae: Species checklist and database on CD-Rom in PLANT SYSTEMATICS AND EVOLUTION
  • 2013-07-30. Identification of candidate genes associated with male sterility in CMS7311 of heading Chinese cabbage (Brassica campestris L. ssp. pekinensis) in ACTA PHYSIOLOGIAE PLANTARUM
  • 2011-10-13. BRAD, the genetics and genomics database for Brassica plants in BMC PLANT BIOLOGY
  • 2009-11-18. Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis in BMC GENOMICS
  • 2013-04-02. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome in BMC PLANT BIOLOGY
  • 2010-09-27. Sequence and structure of Brassica rapachromosome A3 in GENOME BIOLOGY
  • 2014-03-08. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage in MOLECULAR GENETICS AND GENOMICS
  • 2010-01. Genome sequence of the palaeopolyploid soybean in NATURE
  • 2013-06-09. The Capsella rubella genome and the genomic consequences of rapid mating system evolution in NATURE GENETICS
  • 2011-08-28. The genome of the mesopolyploid crop species Brassica rapa in NATURE GENETICS
  • 2013-08-23. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis) in BMC GENOMICS
  • 2010-03. Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region in PLANT SYSTEMATICS AND EVOLUTION
  • 2000-12. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana in NATURE
  • 2005-04-02. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints in THEORETICAL AND APPLIED GENETICS
  • 2013-02-02. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants in THEORETICAL AND APPLIED GENETICS
  • 2009-06. Recent advances and emerging trends in plant hormone signalling in NATURE
  • 2011-04-10. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/hortres.2014.24

    DOI

    http://dx.doi.org/10.1038/hortres.2014.24

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007647459

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26504539


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Evolutionary Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Feng", 
            "id": "sg:person.01334414011.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Jian", 
            "id": "sg:person.01076440533.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiaowu", 
            "id": "sg:person.01111134275.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00122-013-2054-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026021567", 
              "https://doi.org/10.1007/s00122-013-2054-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030725388", 
              "https://doi.org/10.1038/ng.2669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-11-136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034730621", 
              "https://doi.org/10.1186/1471-2229-11-136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027482900", 
              "https://doi.org/10.1186/1471-2164-14-573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017534919", 
              "https://doi.org/10.1038/nature08670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-014-0833-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006970050", 
              "https://doi.org/10.1007/s00438-014-0833-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-13-56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019102970", 
              "https://doi.org/10.1186/1471-2229-13-56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-013-0671-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005133967", 
              "https://doi.org/10.1007/s11105-013-0671-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-010-0271-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023069237", 
              "https://doi.org/10.1007/s00606-010-0271-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-013-2209-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017061470", 
              "https://doi.org/10.1007/s00122-013-2209-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044396209", 
              "https://doi.org/10.1038/nature08122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050879737", 
              "https://doi.org/10.1038/ng.807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35048692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044298669", 
              "https://doi.org/10.1038/35048692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-12-151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015231367", 
              "https://doi.org/10.1186/1471-2229-12-151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035519342", 
              "https://doi.org/10.1038/ng.919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-006-0422-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050762743", 
              "https://doi.org/10.1007/s00606-006-0422-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031763227", 
              "https://doi.org/10.1186/1471-2164-10-539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11738-013-1346-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002734634", 
              "https://doi.org/10.1007/s11738-013-1346-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-9-r94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052725356", 
              "https://doi.org/10.1186/gb-2010-11-9-r94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005748112", 
              "https://doi.org/10.1038/ncomms4930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011621370", 
              "https://doi.org/10.1186/1471-2164-9-113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-1967-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002223875", 
              "https://doi.org/10.1007/s00122-005-1967-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004838565", 
              "https://doi.org/10.1038/ng.889"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05-21", 
        "datePublishedReg": "2014-05-21", 
        "description": "The genus Brassica belongs to the plant family Brassicaceae, which includes many important crop species that are used as oilseed, condiments, or vegetables throughout the world. Brassica plants comprise many diverse species, and each species contains rich morphotypes showing extreme traits. Brassica species experienced an extra whole genome triplication (WGT) event compared with the model plant Arabidopsis thaliana. Whole genome sequencing of the Brassica species Brassica rapa, Brassica oleracea and others demonstrated that WGT plays an important role in the speciation and morphotype diversification of Brassica plants. Comparative genomic analysis based on the genome sequences of B. rapa and A. thaliana clearly identified the WGT event and further demonstrated that the translocated Proto-Calepine Karyotype (tPCK, n=7) was the diploid ancestor of the three subgenomes in B. rapa. Following WGT, subsequent extensive genome fractionation, block reshuffling and chromosome reduction accompanied by paleocentromere descent from the three tPCK subgenomes during the rediploidization process produced stable diploid species. Genomic rearrangement of the diploid species and their hybridization then contributed to Brassica speciation. The subgenome dominance effect and biased gene retention, such as the over-retention of auxin-related genes after WGT, promoted functional gene evolution and thus propelled the expansion of rich morphotypes in the Brassica species. In conclusion, the WGT event initiated subsequent genomic and gene-level evolution, which further drove Brassica speciation and created rich morphotypes in each species.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/hortres.2014.24", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7176762", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1051681", 
            "issn": [
              "2662-6810", 
              "2052-7276"
            ], 
            "name": "Horticulture Research", 
            "publisher": "Oxford University Press (OUP)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "Brassica plants", 
          "WGT event", 
          "diploid species", 
          "B. rapa", 
          "Brassica species", 
          "whole-genome triplication event", 
          "biased gene retention", 
          "functional gene evolution", 
          "model plant Arabidopsis", 
          "important crop species", 
          "species Brassica rapa", 
          "auxin-related genes", 
          "plant family Brassicaceae", 
          "comparative genomic analysis", 
          "rediploidization process", 
          "genome triplication", 
          "gene retention", 
          "triplication event", 
          "plant Arabidopsis", 
          "diploid ancestors", 
          "genome fractionation", 
          "gene evolution", 
          "whole-genome sequencing", 
          "Brassica rapa", 
          "crop species", 
          "diverse species", 
          "chromosome reduction", 
          "genome sequence", 
          "genus Brassica", 
          "family Brassicaceae", 
          "genomic analysis", 
          "Brassica oleracea", 
          "genomic rearrangements", 
          "extreme traits", 
          "genome sequencing", 
          "dominance effects", 
          "rapa", 
          "species", 
          "morphotypes", 
          "subgenomes", 
          "plants", 
          "speciation", 
          "diversification", 
          "Arabidopsis", 
          "WGT", 
          "Brassicaceae", 
          "important role", 
          "Brassica", 
          "ancestor", 
          "oleracea", 
          "genes", 
          "traits", 
          "sequencing", 
          "reshuffling", 
          "hybridization", 
          "evolution", 
          "triplication", 
          "karyotype", 
          "sequence", 
          "oilseeds", 
          "rearrangement", 
          "events", 
          "role", 
          "fractionation", 
          "condiments", 
          "vegetables", 
          "retention", 
          "expansion", 
          "analysis", 
          "descent", 
          "process", 
          "effect", 
          "reduction", 
          "world", 
          "conclusion"
        ], 
        "name": "Genome triplication drove the diversification of Brassica plants", 
        "pagination": "14024", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007647459"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/hortres.2014.24"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26504539"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/hortres.2014.24", 
          "https://app.dimensions.ai/details/publication/pub.1007647459"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_626.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/hortres.2014.24"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hortres.2014.24'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hortres.2014.24'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hortres.2014.24'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hortres.2014.24'


     

    This table displays all metadata directly associated to this object as RDF triples.

    252 TRIPLES      21 PREDICATES      125 URIs      92 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/hortres.2014.24 schema:about anzsrc-for:06
    2 anzsrc-for:0603
    3 anzsrc-for:0604
    4 anzsrc-for:0607
    5 schema:author N65e80a22206941e8be7a7bfe0110454b
    6 schema:citation sg:pub.10.1007/s00122-005-1967-y
    7 sg:pub.10.1007/s00122-013-2054-4
    8 sg:pub.10.1007/s00122-013-2209-3
    9 sg:pub.10.1007/s00438-014-0833-5
    10 sg:pub.10.1007/s00606-006-0422-0
    11 sg:pub.10.1007/s00606-010-0271-8
    12 sg:pub.10.1007/s11105-013-0671-3
    13 sg:pub.10.1007/s11738-013-1346-2
    14 sg:pub.10.1038/35048692
    15 sg:pub.10.1038/nature08122
    16 sg:pub.10.1038/nature08670
    17 sg:pub.10.1038/ncomms4930
    18 sg:pub.10.1038/ng.2669
    19 sg:pub.10.1038/ng.807
    20 sg:pub.10.1038/ng.889
    21 sg:pub.10.1038/ng.919
    22 sg:pub.10.1186/1471-2164-10-539
    23 sg:pub.10.1186/1471-2164-14-573
    24 sg:pub.10.1186/1471-2164-9-113
    25 sg:pub.10.1186/1471-2229-11-136
    26 sg:pub.10.1186/1471-2229-12-151
    27 sg:pub.10.1186/1471-2229-13-56
    28 sg:pub.10.1186/gb-2010-11-9-r94
    29 schema:datePublished 2014-05-21
    30 schema:datePublishedReg 2014-05-21
    31 schema:description The genus Brassica belongs to the plant family Brassicaceae, which includes many important crop species that are used as oilseed, condiments, or vegetables throughout the world. Brassica plants comprise many diverse species, and each species contains rich morphotypes showing extreme traits. Brassica species experienced an extra whole genome triplication (WGT) event compared with the model plant Arabidopsis thaliana. Whole genome sequencing of the Brassica species Brassica rapa, Brassica oleracea and others demonstrated that WGT plays an important role in the speciation and morphotype diversification of Brassica plants. Comparative genomic analysis based on the genome sequences of B. rapa and A. thaliana clearly identified the WGT event and further demonstrated that the translocated Proto-Calepine Karyotype (tPCK, n=7) was the diploid ancestor of the three subgenomes in B. rapa. Following WGT, subsequent extensive genome fractionation, block reshuffling and chromosome reduction accompanied by paleocentromere descent from the three tPCK subgenomes during the rediploidization process produced stable diploid species. Genomic rearrangement of the diploid species and their hybridization then contributed to Brassica speciation. The subgenome dominance effect and biased gene retention, such as the over-retention of auxin-related genes after WGT, promoted functional gene evolution and thus propelled the expansion of rich morphotypes in the Brassica species. In conclusion, the WGT event initiated subsequent genomic and gene-level evolution, which further drove Brassica speciation and created rich morphotypes in each species.
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N80de3e9091c34656ac3ea05e9e1fb4a6
    35 N94f6961316264cfb8dfa1a0bf55c6a58
    36 sg:journal.1051681
    37 schema:keywords Arabidopsis
    38 B. rapa
    39 Brassica
    40 Brassica oleracea
    41 Brassica plants
    42 Brassica rapa
    43 Brassica species
    44 Brassicaceae
    45 WGT
    46 WGT event
    47 analysis
    48 ancestor
    49 auxin-related genes
    50 biased gene retention
    51 chromosome reduction
    52 comparative genomic analysis
    53 conclusion
    54 condiments
    55 crop species
    56 descent
    57 diploid ancestors
    58 diploid species
    59 diverse species
    60 diversification
    61 dominance effects
    62 effect
    63 events
    64 evolution
    65 expansion
    66 extreme traits
    67 family Brassicaceae
    68 fractionation
    69 functional gene evolution
    70 gene evolution
    71 gene retention
    72 genes
    73 genome fractionation
    74 genome sequence
    75 genome sequencing
    76 genome triplication
    77 genomic analysis
    78 genomic rearrangements
    79 genus Brassica
    80 hybridization
    81 important crop species
    82 important role
    83 karyotype
    84 model plant Arabidopsis
    85 morphotypes
    86 oilseeds
    87 oleracea
    88 plant Arabidopsis
    89 plant family Brassicaceae
    90 plants
    91 process
    92 rapa
    93 rearrangement
    94 rediploidization process
    95 reduction
    96 reshuffling
    97 retention
    98 role
    99 sequence
    100 sequencing
    101 speciation
    102 species
    103 species Brassica rapa
    104 subgenomes
    105 traits
    106 triplication
    107 triplication event
    108 vegetables
    109 whole-genome sequencing
    110 whole-genome triplication event
    111 world
    112 schema:name Genome triplication drove the diversification of Brassica plants
    113 schema:pagination 14024
    114 schema:productId N0680bd23a8e845cd8f010b100331d52a
    115 Ndf8ad63c53384c7399b105bd9c0d30c3
    116 Nee248639660f46eb864f148f37d27ba9
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007647459
    118 https://doi.org/10.1038/hortres.2014.24
    119 schema:sdDatePublished 2022-12-01T06:32
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher N405178f33c1d463c838fc734162c7dff
    122 schema:url https://doi.org/10.1038/hortres.2014.24
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N0680bd23a8e845cd8f010b100331d52a schema:name doi
    127 schema:value 10.1038/hortres.2014.24
    128 rdf:type schema:PropertyValue
    129 N405178f33c1d463c838fc734162c7dff schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 N65e80a22206941e8be7a7bfe0110454b rdf:first sg:person.01334414011.76
    132 rdf:rest N6e3084077c284fa085084bd550c0bb93
    133 N69d59c67988e4a2fb04b94f1cb14d736 rdf:first sg:person.01111134275.07
    134 rdf:rest rdf:nil
    135 N6e3084077c284fa085084bd550c0bb93 rdf:first sg:person.01076440533.87
    136 rdf:rest N69d59c67988e4a2fb04b94f1cb14d736
    137 N80de3e9091c34656ac3ea05e9e1fb4a6 schema:volumeNumber 1
    138 rdf:type schema:PublicationVolume
    139 N94f6961316264cfb8dfa1a0bf55c6a58 schema:issueNumber 1
    140 rdf:type schema:PublicationIssue
    141 Ndf8ad63c53384c7399b105bd9c0d30c3 schema:name dimensions_id
    142 schema:value pub.1007647459
    143 rdf:type schema:PropertyValue
    144 Nee248639660f46eb864f148f37d27ba9 schema:name pubmed_id
    145 schema:value 26504539
    146 rdf:type schema:PropertyValue
    147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Biological Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Evolutionary Biology
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Genetics
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Plant Biology
    158 rdf:type schema:DefinedTerm
    159 sg:grant.7176762 http://pending.schema.org/fundedItem sg:pub.10.1038/hortres.2014.24
    160 rdf:type schema:MonetaryGrant
    161 sg:journal.1051681 schema:issn 2052-7276
    162 2662-6810
    163 schema:name Horticulture Research
    164 schema:publisher Oxford University Press (OUP)
    165 rdf:type schema:Periodical
    166 sg:person.01076440533.87 schema:affiliation grid-institutes:grid.464357.7
    167 schema:familyName Wu
    168 schema:givenName Jian
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87
    170 rdf:type schema:Person
    171 sg:person.01111134275.07 schema:affiliation grid-institutes:grid.464357.7
    172 schema:familyName Wang
    173 schema:givenName Xiaowu
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07
    175 rdf:type schema:Person
    176 sg:person.01334414011.76 schema:affiliation grid-institutes:grid.464357.7
    177 schema:familyName Cheng
    178 schema:givenName Feng
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76
    180 rdf:type schema:Person
    181 sg:pub.10.1007/s00122-005-1967-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002223875
    182 https://doi.org/10.1007/s00122-005-1967-y
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00122-013-2054-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026021567
    185 https://doi.org/10.1007/s00122-013-2054-4
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00122-013-2209-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017061470
    188 https://doi.org/10.1007/s00122-013-2209-3
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00438-014-0833-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006970050
    191 https://doi.org/10.1007/s00438-014-0833-5
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00606-006-0422-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050762743
    194 https://doi.org/10.1007/s00606-006-0422-0
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00606-010-0271-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023069237
    197 https://doi.org/10.1007/s00606-010-0271-8
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11105-013-0671-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005133967
    200 https://doi.org/10.1007/s11105-013-0671-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s11738-013-1346-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002734634
    203 https://doi.org/10.1007/s11738-013-1346-2
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/35048692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298669
    206 https://doi.org/10.1038/35048692
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nature08122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044396209
    209 https://doi.org/10.1038/nature08122
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature08670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017534919
    212 https://doi.org/10.1038/nature08670
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ncomms4930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005748112
    215 https://doi.org/10.1038/ncomms4930
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ng.2669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030725388
    218 https://doi.org/10.1038/ng.2669
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ng.807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050879737
    221 https://doi.org/10.1038/ng.807
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ng.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004838565
    224 https://doi.org/10.1038/ng.889
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ng.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035519342
    227 https://doi.org/10.1038/ng.919
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/1471-2164-10-539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031763227
    230 https://doi.org/10.1186/1471-2164-10-539
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/1471-2164-14-573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027482900
    233 https://doi.org/10.1186/1471-2164-14-573
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/1471-2164-9-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011621370
    236 https://doi.org/10.1186/1471-2164-9-113
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1186/1471-2229-11-136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034730621
    239 https://doi.org/10.1186/1471-2229-11-136
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1186/1471-2229-12-151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015231367
    242 https://doi.org/10.1186/1471-2229-12-151
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1186/1471-2229-13-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019102970
    245 https://doi.org/10.1186/1471-2229-13-56
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/gb-2010-11-9-r94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052725356
    248 https://doi.org/10.1186/gb-2010-11-9-r94
    249 rdf:type schema:CreativeWork
    250 grid-institutes:grid.464357.7 schema:alternateName Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    251 schema:name Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    252 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...