Properties of different selection signature statistics and a new strategy for combining them View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11

AUTHORS

Y Ma, X Ding, S Qanbari, S Weigend, Q Zhang, H Simianer

ABSTRACT

Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of extensive simulations in this study, we discuss the statistical properties of eight different established selection signature statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high marker density (>1 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS) to combine different statistics for detecting selection signatures while accounting for the correlation between the different selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait. More... »

PAGES

426

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hdy.2015.42

DOI

http://dx.doi.org/10.1038/hdy.2015.42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033884603

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25990878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chickens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HapMap Project", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College Animal Science and Technology, China Agricultural University, Beijing, China", 
            "Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Goettingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Y", 
        "id": "sg:person.01357430030.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357430030.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College Animal Science and Technology, China Agricultural University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "X", 
        "id": "sg:person.0750252330.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750252330.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Goettingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qanbari", 
        "givenName": "S", 
        "id": "sg:person.01355224754.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355224754.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Office for Food and Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.423734.5", 
          "name": [
            "Institute for Animal Breeding, Federal Agricultural Research Centre, Mariensee, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weigend", 
        "givenName": "S", 
        "id": "sg:person.01247200551.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247200551.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College Animal Science and Technology, China Agricultural University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Q", 
        "id": "sg:person.0702137130.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702137130.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Goettingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simianer", 
        "givenName": "H", 
        "id": "sg:person.01221250726.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221250726.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1183863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000390264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002924872", 
          "https://doi.org/10.1038/nrg1294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002924872", 
          "https://doi.org/10.1038/nrg1294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003075526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4252305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005193627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.077073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008840944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.077073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008840944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010666434", 
          "https://doi.org/10.1038/nature01140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010666434", 
          "https://doi.org/10.1038/nature01140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-genet-111212-133526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010825782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014033494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1420-9101.2005.00917.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014096055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1420-9101.2005.00917.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014096055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016673321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-15-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021518491", 
          "https://doi.org/10.1186/1471-2156-15-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0044751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024063505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024966869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1949.tb02451.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025534180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00071668.2010.518408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026394584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026438222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0064280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026964985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ydbio.2008.11.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029533598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030948598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030948598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bar049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031978003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.100545.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033108196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033548087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034744425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036876479", 
          "https://doi.org/10.1038/nature06250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037474082", 
          "https://doi.org/10.1038/nature08832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037474082", 
          "https://doi.org/10.1038/nature08832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038490948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0048879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043759715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.087577.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044062201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2009.0219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044930250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2009.0203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047101947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2012.01016.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047394242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/erm.10.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049038887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/421051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049950502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050533642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672310000121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054783610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078861211", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078957195", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082812997", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of extensive simulations in this study, we discuss the statistical properties of eight different established selection signature statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high marker density (>1 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS) to combine different statistics for detecting selection signatures while accounting for the correlation between the different selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/hdy.2015.42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7197486", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "115"
      }
    ], 
    "name": "Properties of different selection signature statistics and a new strategy for combining them", 
    "pagination": "426", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a16adad67067e4f60ac018d04f0722d752203821fc7e4a4d2eefd013245ac78d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25990878"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0373007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hdy.2015.42"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033884603"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hdy.2015.42", 
      "https://app.dimensions.ai/details/publication/pub.1033884603"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/hdy201542"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hdy.2015.42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hdy.2015.42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hdy.2015.42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hdy.2015.42'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      80 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hdy.2015.42 schema:about N171c7acc72af4aa8ac9a0ba7e67a0128
2 N3cce5aab22a64bccbeee83ef1c35e718
3 N4681d3110d6f416cabe59cc596b3bf26
4 N4ea19370ad1d4681837b291bba9ddeb8
5 N5100bae0ea1f44afb9d1e11e96ad2514
6 N62f4e2f50b9c4311ac05819a95230a28
7 Nb0a04c71ef9649308374888e0a0fd6d5
8 Nc34c986df4c548fcbd0894d53b8e28a1
9 Nc7f523ca43db47a49ee134e6df3ecc42
10 Ncbf0a4c45d2144c5a31ceefb6cecae4b
11 Ne02c3849dde54bc3817e333af6442668
12 Ne4be424bca9c4ea795cba47c8dfe053f
13 Nfc285aafc8144e2b9dc19a25b86e858c
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N0e6de229ae9c4c08ab7b1acc565c83ce
17 schema:citation sg:pub.10.1038/nature01140
18 sg:pub.10.1038/nature06250
19 sg:pub.10.1038/nature08832
20 sg:pub.10.1038/nrg1294
21 sg:pub.10.1186/1471-2156-15-34
22 https://app.dimensions.ai/details/publication/pub.1078861211
23 https://app.dimensions.ai/details/publication/pub.1078957195
24 https://app.dimensions.ai/details/publication/pub.1082812997
25 https://doi.org/10.1016/j.ajhg.2009.01.005
26 https://doi.org/10.1016/j.cell.2013.01.035
27 https://doi.org/10.1016/j.ydbio.2008.11.029
28 https://doi.org/10.1017/s0016672310000121
29 https://doi.org/10.1080/00071668.2010.518408
30 https://doi.org/10.1086/421051
31 https://doi.org/10.1093/bioinformatics/btq322
32 https://doi.org/10.1093/bioinformatics/bts115
33 https://doi.org/10.1093/database/bar049
34 https://doi.org/10.1093/nar/gkq1125
35 https://doi.org/10.1098/rstb.2009.0203
36 https://doi.org/10.1098/rstb.2009.0219
37 https://doi.org/10.1101/gr.087577.108
38 https://doi.org/10.1101/gr.100545.109
39 https://doi.org/10.1101/gr.4252305
40 https://doi.org/10.1111/j.1420-9101.2005.00917.x
41 https://doi.org/10.1111/j.1439-0388.2012.01016.x
42 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
43 https://doi.org/10.1126/science.1183863
44 https://doi.org/10.1146/annurev-genet-111212-133526
45 https://doi.org/10.1371/journal.pbio.0040072
46 https://doi.org/10.1371/journal.pgen.1000010
47 https://doi.org/10.1371/journal.pgen.1002412
48 https://doi.org/10.1371/journal.pgen.1002891
49 https://doi.org/10.1371/journal.pgen.1004148
50 https://doi.org/10.1371/journal.pone.0044751
51 https://doi.org/10.1371/journal.pone.0048879
52 https://doi.org/10.1371/journal.pone.0064280
53 https://doi.org/10.1534/genetics.107.077073
54 https://doi.org/10.1586/erm.10.90
55 schema:datePublished 2015-11
56 schema:datePublishedReg 2015-11-01
57 schema:description Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of extensive simulations in this study, we discuss the statistical properties of eight different established selection signature statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high marker density (>1 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS) to combine different statistics for detecting selection signatures while accounting for the correlation between the different selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N3402fc658a854a3789c9422237d1917d
62 Nf7d29b0aba9e4981b7e749898182021a
63 sg:journal.1017442
64 schema:name Properties of different selection signature statistics and a new strategy for combining them
65 schema:pagination 426
66 schema:productId N41ec7d78f3204706979fa1ce7d8695ba
67 N5cbe77e254784298a7d0e8ca3499526e
68 N8551d83b65574b279f5dfdcf78acc419
69 N9a3db34e96a84ee0ac7850b15dff0553
70 Ne0542e3764b04cc1bbd59d701eef67cf
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033884603
72 https://doi.org/10.1038/hdy.2015.42
73 schema:sdDatePublished 2019-04-10T18:08
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nab86dcf46c6f42719db97d771cc94b54
76 schema:url https://www.nature.com/articles/hdy201542
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N079e20679b1f4e86a11fa0696f204b26 schema:name Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College Animal Science and Technology, China Agricultural University, Beijing, China
81 rdf:type schema:Organization
82 N0b5d7f63b8e94210b137e629279f35bc rdf:first sg:person.01355224754.52
83 rdf:rest N209d7f471ebd45ff9700e19d4f729e36
84 N0e6de229ae9c4c08ab7b1acc565c83ce rdf:first sg:person.01357430030.30
85 rdf:rest Ne73d4fc7ebb84afc83c7a683fd4d9dd5
86 N171c7acc72af4aa8ac9a0ba7e67a0128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Models, Genetic
88 rdf:type schema:DefinedTerm
89 N1985fd85db89493480318dc3cc75040d rdf:first sg:person.01221250726.49
90 rdf:rest rdf:nil
91 N209d7f471ebd45ff9700e19d4f729e36 rdf:first sg:person.01247200551.47
92 rdf:rest Ndb0fa79b4e424631a6d178ccc4c15ccc
93 N3402fc658a854a3789c9422237d1917d schema:issueNumber 5
94 rdf:type schema:PublicationIssue
95 N3cce5aab22a64bccbeee83ef1c35e718 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Breeding
97 rdf:type schema:DefinedTerm
98 N41ec7d78f3204706979fa1ce7d8695ba schema:name doi
99 schema:value 10.1038/hdy.2015.42
100 rdf:type schema:PropertyValue
101 N4681d3110d6f416cabe59cc596b3bf26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Data Interpretation, Statistical
103 rdf:type schema:DefinedTerm
104 N4ea19370ad1d4681837b291bba9ddeb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Chickens
106 rdf:type schema:DefinedTerm
107 N5100bae0ea1f44afb9d1e11e96ad2514 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Polymorphism, Single Nucleotide
109 rdf:type schema:DefinedTerm
110 N5cbe77e254784298a7d0e8ca3499526e schema:name readcube_id
111 schema:value a16adad67067e4f60ac018d04f0722d752203821fc7e4a4d2eefd013245ac78d
112 rdf:type schema:PropertyValue
113 N62f4e2f50b9c4311ac05819a95230a28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Gene Frequency
115 rdf:type schema:DefinedTerm
116 N8551d83b65574b279f5dfdcf78acc419 schema:name pubmed_id
117 schema:value 25990878
118 rdf:type schema:PropertyValue
119 N9a3db34e96a84ee0ac7850b15dff0553 schema:name dimensions_id
120 schema:value pub.1033884603
121 rdf:type schema:PropertyValue
122 Nab86dcf46c6f42719db97d771cc94b54 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nb0a04c71ef9649308374888e0a0fd6d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 Nc34c986df4c548fcbd0894d53b8e28a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name HapMap Project
129 rdf:type schema:DefinedTerm
130 Nc7f523ca43db47a49ee134e6df3ecc42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Computer Simulation
132 rdf:type schema:DefinedTerm
133 Ncbf0a4c45d2144c5a31ceefb6cecae4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Animals
135 rdf:type schema:DefinedTerm
136 Ndb0fa79b4e424631a6d178ccc4c15ccc rdf:first sg:person.0702137130.41
137 rdf:rest N1985fd85db89493480318dc3cc75040d
138 Ne02c3849dde54bc3817e333af6442668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Selection, Genetic
140 rdf:type schema:DefinedTerm
141 Ne0542e3764b04cc1bbd59d701eef67cf schema:name nlm_unique_id
142 schema:value 0373007
143 rdf:type schema:PropertyValue
144 Ne40ff24fb0b849118c2425d5883b7c7e schema:name Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College Animal Science and Technology, China Agricultural University, Beijing, China
145 rdf:type schema:Organization
146 Ne4be424bca9c4ea795cba47c8dfe053f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Haplotypes
148 rdf:type schema:DefinedTerm
149 Ne73d4fc7ebb84afc83c7a683fd4d9dd5 rdf:first sg:person.0750252330.42
150 rdf:rest N0b5d7f63b8e94210b137e629279f35bc
151 Nf7d29b0aba9e4981b7e749898182021a schema:volumeNumber 115
152 rdf:type schema:PublicationVolume
153 Nfc285aafc8144e2b9dc19a25b86e858c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Likelihood Functions
155 rdf:type schema:DefinedTerm
156 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biological Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
160 schema:name Genetics
161 rdf:type schema:DefinedTerm
162 sg:grant.7197486 http://pending.schema.org/fundedItem sg:pub.10.1038/hdy.2015.42
163 rdf:type schema:MonetaryGrant
164 sg:journal.1017442 schema:issn 0018-067X
165 1365-2540
166 schema:name Heredity
167 rdf:type schema:Periodical
168 sg:person.01221250726.49 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
169 schema:familyName Simianer
170 schema:givenName H
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221250726.49
172 rdf:type schema:Person
173 sg:person.01247200551.47 schema:affiliation https://www.grid.ac/institutes/grid.423734.5
174 schema:familyName Weigend
175 schema:givenName S
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247200551.47
177 rdf:type schema:Person
178 sg:person.01355224754.52 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
179 schema:familyName Qanbari
180 schema:givenName S
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355224754.52
182 rdf:type schema:Person
183 sg:person.01357430030.30 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
184 schema:familyName Ma
185 schema:givenName Y
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357430030.30
187 rdf:type schema:Person
188 sg:person.0702137130.41 schema:affiliation Ne40ff24fb0b849118c2425d5883b7c7e
189 schema:familyName Zhang
190 schema:givenName Q
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702137130.41
192 rdf:type schema:Person
193 sg:person.0750252330.42 schema:affiliation N079e20679b1f4e86a11fa0696f204b26
194 schema:familyName Ding
195 schema:givenName X
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750252330.42
197 rdf:type schema:Person
198 sg:pub.10.1038/nature01140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010666434
199 https://doi.org/10.1038/nature01140
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nature06250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036876479
202 https://doi.org/10.1038/nature06250
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nature08832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037474082
205 https://doi.org/10.1038/nature08832
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nrg1294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002924872
208 https://doi.org/10.1038/nrg1294
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/1471-2156-15-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021518491
211 https://doi.org/10.1186/1471-2156-15-34
212 rdf:type schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1078861211 schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1078957195 schema:CreativeWork
215 https://app.dimensions.ai/details/publication/pub.1082812997 schema:CreativeWork
216 https://doi.org/10.1016/j.ajhg.2009.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033548087
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.cell.2013.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050533642
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.ydbio.2008.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029533598
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1017/s0016672310000121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054783610
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1080/00071668.2010.518408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026394584
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1086/421051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049950502
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/bioinformatics/btq322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038490948
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/bioinformatics/bts115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026438222
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/database/bar049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031978003
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/gkq1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016673321
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1098/rstb.2009.0203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047101947
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1098/rstb.2009.0219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044930250
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1101/gr.087577.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044062201
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1101/gr.100545.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033108196
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1101/gr.4252305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005193627
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1111/j.1420-9101.2005.00917.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014096055
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1111/j.1439-0388.2012.01016.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047394242
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534180
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/science.1183863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000390264
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1146/annurev-genet-111212-133526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010825782
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pbio.0040072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030948598
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pgen.1000010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034744425
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pgen.1002412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024966869
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pgen.1002891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003075526
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pgen.1004148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014033494
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pone.0044751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024063505
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1371/journal.pone.0048879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043759715
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1371/journal.pone.0064280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026964985
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1534/genetics.107.077073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008840944
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1586/erm.10.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049038887
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.423734.5 schema:alternateName Federal Office for Food and Agriculture
277 schema:name Institute for Animal Breeding, Federal Agricultural Research Centre, Mariensee, Germany
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
280 schema:name Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Goettingen, Germany
281 Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College Animal Science and Technology, China Agricultural University, Beijing, China
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...