Genomic prediction in CIMMYT maize and wheat breeding programs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01

AUTHORS

J Crossa, P Pérez, J Hickey, J Burgueño, L Ornella, J Cerón-Rojas, X Zhang, S Dreisigacker, R Babu, Y Li, D Bonnett, K Mathews

ABSTRACT

Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype × environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required. More... »

PAGES

48

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hdy.2013.16

DOI

http://dx.doi.org/10.1038/hdy.2013.16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027840551

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23572121


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene-Environment Interaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triticum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zea mays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "J", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colegio de Postgraduados", 
          "id": "https://www.grid.ac/institutes/grid.418752.d", 
          "name": [
            "Colegio de Postgraduados, Montecillo, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "P", 
        "id": "sg:person.0617307633.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617307633.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of New England", 
          "id": "https://www.grid.ac/institutes/grid.1020.3", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico", 
            "School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hickey", 
        "givenName": "J", 
        "id": "sg:person.01023111503.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023111503.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "J", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "French-Argentine International Center for Information and Systems Sciences (CIFASIS), Rosario, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ornella", 
        "givenName": "L", 
        "id": "sg:person.01210431504.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210431504.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cer\u00f3n-Rojas", 
        "givenName": "J", 
        "id": "sg:person.01355763631.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355763631.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "X", 
        "id": "sg:person.01370054024.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370054024.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dreisigacker", 
        "givenName": "S", 
        "id": "sg:person.0633774530.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633774530.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babu", 
        "givenName": "R", 
        "id": "sg:person.01275441140.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275441140.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Y", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnett", 
        "givenName": "D", 
        "id": "sg:person.0660376572.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660376572.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathews", 
        "givenName": "K", 
        "id": "sg:person.0604225313.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604225313.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1534/genetics.110.118521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001006890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.118521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001006890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15427528.2011.558767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002965213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.109.101501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006799846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.109.101501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006799846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.hdy.6800702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011291003", 
          "https://doi.org/10.1038/sj.hdy.6800702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.hdy.6800702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011291003", 
          "https://doi.org/10.1038/sj.hdy.6800702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.081190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017395594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.081190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017395594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-012-1868-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018173298", 
          "https://doi.org/10.1007/s00122-012-1868-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672310000285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018728175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.049510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019052658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.049510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019052658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00702.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022268384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00702.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022268384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027245638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027245638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.1033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027256894", 
          "https://doi.org/10.1038/ng.1033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028885396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029683381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fgene.2011.00109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029934038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-011-1745-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035706759", 
          "https://doi.org/10.1007/s00122-011-1745-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1166-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037225822", 
          "https://doi.org/10.1007/s00122-009-1166-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1166-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037225822", 
          "https://doi.org/10.1007/s00122-009-1166-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1166-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037225822", 
          "https://doi.org/10.1007/s00122-009-1166-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-12-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038980256", 
          "https://doi.org/10.1186/1471-2156-12-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0003395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041850095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13253-010-0046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043982019", 
          "https://doi.org/10.1007/s13253-010-0046-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2012.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044404004", 
          "https://doi.org/10.1038/hdy.2012.44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052787783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052787783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214508000000337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2006.09.0564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069030115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2006.11.0690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069030168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2008.03.0131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069030592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2010.07.0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2011.06.0299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2011.07.0358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome.2010.12.0029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2010.04.0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2012.07.0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077799697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2010.12.0029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091447873"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01", 
    "datePublishedReg": "2014-01-01", 
    "description": "Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype \u00d7 environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/hdy.2013.16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "name": "Genomic prediction in CIMMYT maize and wheat breeding programs", 
    "pagination": "48", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "849f8246f279c939d4a1f0783eb062f74f3f2d0677288b978ef656712c90fc3b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23572121"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0373007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hdy.2013.16"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027840551"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hdy.2013.16", 
      "https://app.dimensions.ai/details/publication/pub.1027840551"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/hdy201316"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.16'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      73 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hdy.2013.16 schema:about N21d772221f62491084255776ae2e0b12
2 N2800b00dd34f4a3fbba79d00b59c3dfa
3 N29206715e1b644d69614b116cf545479
4 N3028b7afe831419a914c334506fa2bcb
5 N43e1d40bdc264095b254850ec9a75c98
6 N44968d59a99c4957ac839de8b9dec2de
7 N5c6dfdacbc5e4e159d3dc21cd8e905b8
8 Nc1c3933916b948cabce54d1cdcfda975
9 Ne33177ba89a441e5a9b0c21cb5341552
10 Nf9b8af63e0ee4fb6bbbb6683cf34c63c
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Ne311fcdaa291402aaef9d8c748160882
14 schema:citation sg:pub.10.1007/s00122-009-1166-3
15 sg:pub.10.1007/s00122-011-1745-y
16 sg:pub.10.1007/s00122-012-1868-9
17 sg:pub.10.1007/s13253-010-0046-2
18 sg:pub.10.1038/hdy.2012.44
19 sg:pub.10.1038/ng.1033
20 sg:pub.10.1038/sj.hdy.6800702
21 sg:pub.10.1186/1471-2156-12-87
22 https://app.dimensions.ai/details/publication/pub.1074795580
23 https://doi.org/10.1017/s0016672310000285
24 https://doi.org/10.1080/15427528.2011.558767
25 https://doi.org/10.1111/j.1439-0388.2007.00702.x
26 https://doi.org/10.1198/016214508000000337
27 https://doi.org/10.1371/journal.pone.0003395
28 https://doi.org/10.1534/g3.112.003665
29 https://doi.org/10.1534/g3.112.003699
30 https://doi.org/10.1534/genetics.105.049510
31 https://doi.org/10.1534/genetics.107.081190
32 https://doi.org/10.1534/genetics.109.101501
33 https://doi.org/10.1534/genetics.110.118521
34 https://doi.org/10.2135/cropsci2006.09.0564
35 https://doi.org/10.2135/cropsci2006.11.0690
36 https://doi.org/10.2135/cropsci2008.03.0131
37 https://doi.org/10.2135/cropsci2010.07.0403
38 https://doi.org/10.2135/cropsci2011.06.0299
39 https://doi.org/10.2135/cropsci2011.07.0358
40 https://doi.org/10.3168/jds.2007-0980
41 https://doi.org/10.3168/jds.2008-1514
42 https://doi.org/10.3168/jds.2008-1646
43 https://doi.org/10.3389/fgene.2011.00109
44 https://doi.org/10.3835/plantgenome.2010.12.0029
45 https://doi.org/10.3835/plantgenome2010.04.0005
46 https://doi.org/10.3835/plantgenome2010.12.0029
47 https://doi.org/10.3835/plantgenome2012.07.0017
48 schema:datePublished 2014-01
49 schema:datePublishedReg 2014-01-01
50 schema:description Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype × environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N0dbb19533c0846bd8b04f8fd4b4b21d4
55 Nf719d386a81046b380c05188bfb9651a
56 sg:journal.1017442
57 schema:name Genomic prediction in CIMMYT maize and wheat breeding programs
58 schema:pagination 48
59 schema:productId N9d5699a73e4246d6977a90deee61d1a2
60 N9d9e0ef7d43e45ac909565b173697f65
61 N9f2cec3d2c57419a81ed92c17b374abf
62 Na227b6e4d60841a78d9b8c54803bc913
63 Nc4423d9e3de04238867d5b6d00f0286e
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027840551
65 https://doi.org/10.1038/hdy.2013.16
66 schema:sdDatePublished 2019-04-10T13:25
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nd614b09bc1bb469385b09b8d753b1bf1
69 schema:url https://www.nature.com/articles/hdy201316
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0dbb19533c0846bd8b04f8fd4b4b21d4 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 N21d772221f62491084255776ae2e0b12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Zea mays
77 rdf:type schema:DefinedTerm
78 N2800b00dd34f4a3fbba79d00b59c3dfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Gene-Environment Interaction
80 rdf:type schema:DefinedTerm
81 N29206715e1b644d69614b116cf545479 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Quantitative Trait, Heritable
83 rdf:type schema:DefinedTerm
84 N3028b7afe831419a914c334506fa2bcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Selection, Genetic
86 rdf:type schema:DefinedTerm
87 N3a8150fa350140a290de3d1cc1d8f9bd rdf:first sg:person.0617307633.01
88 rdf:rest N9c3a0992a8f9464b83595000af7a477d
89 N43e1d40bdc264095b254850ec9a75c98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Genotype
91 rdf:type schema:DefinedTerm
92 N44968d59a99c4957ac839de8b9dec2de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Genetics, Population
94 rdf:type schema:DefinedTerm
95 N49dbaf7d4ebb4ac595abb212266110d8 rdf:first sg:person.01210431504.62
96 rdf:rest Nd4fdd13fdc054144a066266722cf71d7
97 N5c6dfdacbc5e4e159d3dc21cd8e905b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Phenotype
99 rdf:type schema:DefinedTerm
100 N6c3d9a919aa14437b0c390c531145da9 rdf:first sg:person.01370054024.00
101 rdf:rest Nc7be278082ae43f591f76c49a014e533
102 N8abaa7892f144b0890eff09fa3ace4eb schema:name French-Argentine International Center for Information and Systems Sciences (CIFASIS), Rosario, Argentina
103 rdf:type schema:Organization
104 N9c3a0992a8f9464b83595000af7a477d rdf:first sg:person.01023111503.21
105 rdf:rest Nca446ce3b1cf4d6a80f86f5b2e52980a
106 N9d5699a73e4246d6977a90deee61d1a2 schema:name dimensions_id
107 schema:value pub.1027840551
108 rdf:type schema:PropertyValue
109 N9d9e0ef7d43e45ac909565b173697f65 schema:name readcube_id
110 schema:value 849f8246f279c939d4a1f0783eb062f74f3f2d0677288b978ef656712c90fc3b
111 rdf:type schema:PropertyValue
112 N9f2cec3d2c57419a81ed92c17b374abf schema:name doi
113 schema:value 10.1038/hdy.2013.16
114 rdf:type schema:PropertyValue
115 Na09333ce2ff546cf90cd5a7f13566853 rdf:first Nf50569206df045aaada22ab75f6a2fb5
116 rdf:rest Nd8d16491fe0348ddaecbb31a9c0b1886
117 Na227b6e4d60841a78d9b8c54803bc913 schema:name nlm_unique_id
118 schema:value 0373007
119 rdf:type schema:PropertyValue
120 Naa71b78612f64292bdf0e48502cee0d1 rdf:first sg:person.01275441140.29
121 rdf:rest Na09333ce2ff546cf90cd5a7f13566853
122 Nb56ddd3204e64b79aba5b967ac7609ff rdf:first sg:person.0604225313.46
123 rdf:rest rdf:nil
124 Nc1c3933916b948cabce54d1cdcfda975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Triticum
126 rdf:type schema:DefinedTerm
127 Nc4423d9e3de04238867d5b6d00f0286e schema:name pubmed_id
128 schema:value 23572121
129 rdf:type schema:PropertyValue
130 Nc7be278082ae43f591f76c49a014e533 rdf:first sg:person.0633774530.75
131 rdf:rest Naa71b78612f64292bdf0e48502cee0d1
132 Nca446ce3b1cf4d6a80f86f5b2e52980a rdf:first sg:person.0733536233.17
133 rdf:rest N49dbaf7d4ebb4ac595abb212266110d8
134 Nd4fdd13fdc054144a066266722cf71d7 rdf:first sg:person.01355763631.61
135 rdf:rest N6c3d9a919aa14437b0c390c531145da9
136 Nd614b09bc1bb469385b09b8d753b1bf1 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nd8d16491fe0348ddaecbb31a9c0b1886 rdf:first sg:person.0660376572.93
139 rdf:rest Nb56ddd3204e64b79aba5b967ac7609ff
140 Ne311fcdaa291402aaef9d8c748160882 rdf:first sg:person.01274600533.83
141 rdf:rest N3a8150fa350140a290de3d1cc1d8f9bd
142 Ne33177ba89a441e5a9b0c21cb5341552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Genome, Plant
144 rdf:type schema:DefinedTerm
145 Nf50569206df045aaada22ab75f6a2fb5 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
146 schema:familyName Li
147 schema:givenName Y
148 rdf:type schema:Person
149 Nf719d386a81046b380c05188bfb9651a schema:volumeNumber 112
150 rdf:type schema:PublicationVolume
151 Nf9b8af63e0ee4fb6bbbb6683cf34c63c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Models, Genetic
153 rdf:type schema:DefinedTerm
154 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
155 schema:name Biological Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
158 schema:name Genetics
159 rdf:type schema:DefinedTerm
160 sg:journal.1017442 schema:issn 0018-067X
161 1365-2540
162 schema:name Heredity
163 rdf:type schema:Periodical
164 sg:person.01023111503.21 schema:affiliation https://www.grid.ac/institutes/grid.1020.3
165 schema:familyName Hickey
166 schema:givenName J
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023111503.21
168 rdf:type schema:Person
169 sg:person.01210431504.62 schema:affiliation N8abaa7892f144b0890eff09fa3ace4eb
170 schema:familyName Ornella
171 schema:givenName L
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210431504.62
173 rdf:type schema:Person
174 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
175 schema:familyName Crossa
176 schema:givenName J
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
178 rdf:type schema:Person
179 sg:person.01275441140.29 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
180 schema:familyName Babu
181 schema:givenName R
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275441140.29
183 rdf:type schema:Person
184 sg:person.01355763631.61 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
185 schema:familyName Cerón-Rojas
186 schema:givenName J
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355763631.61
188 rdf:type schema:Person
189 sg:person.01370054024.00 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
190 schema:familyName Zhang
191 schema:givenName X
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370054024.00
193 rdf:type schema:Person
194 sg:person.0604225313.46 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
195 schema:familyName Mathews
196 schema:givenName K
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604225313.46
198 rdf:type schema:Person
199 sg:person.0617307633.01 schema:affiliation https://www.grid.ac/institutes/grid.418752.d
200 schema:familyName Pérez
201 schema:givenName P
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617307633.01
203 rdf:type schema:Person
204 sg:person.0633774530.75 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
205 schema:familyName Dreisigacker
206 schema:givenName S
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633774530.75
208 rdf:type schema:Person
209 sg:person.0660376572.93 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
210 schema:familyName Bonnett
211 schema:givenName D
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660376572.93
213 rdf:type schema:Person
214 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
215 schema:familyName Burgueño
216 schema:givenName J
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
218 rdf:type schema:Person
219 sg:pub.10.1007/s00122-009-1166-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037225822
220 https://doi.org/10.1007/s00122-009-1166-3
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00122-011-1745-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035706759
223 https://doi.org/10.1007/s00122-011-1745-y
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00122-012-1868-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018173298
226 https://doi.org/10.1007/s00122-012-1868-9
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s13253-010-0046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043982019
229 https://doi.org/10.1007/s13253-010-0046-2
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/hdy.2012.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044404004
232 https://doi.org/10.1038/hdy.2012.44
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/ng.1033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027256894
235 https://doi.org/10.1038/ng.1033
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/sj.hdy.6800702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011291003
238 https://doi.org/10.1038/sj.hdy.6800702
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1471-2156-12-87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038980256
241 https://doi.org/10.1186/1471-2156-12-87
242 rdf:type schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
244 https://doi.org/10.1017/s0016672310000285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728175
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1080/15427528.2011.558767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002965213
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1111/j.1439-0388.2007.00702.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022268384
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1198/016214508000000337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198793
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pone.0003395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850095
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1534/g3.112.003665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052787783
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1534/g3.112.003699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027245638
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1534/genetics.105.049510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019052658
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1534/genetics.107.081190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395594
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1534/genetics.109.101501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006799846
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1534/genetics.110.118521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001006890
265 rdf:type schema:CreativeWork
266 https://doi.org/10.2135/cropsci2006.09.0564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030115
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2135/cropsci2006.11.0690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030168
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2135/cropsci2008.03.0131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030592
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2135/cropsci2010.07.0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031285
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2135/cropsci2011.06.0299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031548
275 rdf:type schema:CreativeWork
276 https://doi.org/10.2135/cropsci2011.07.0358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031573
277 rdf:type schema:CreativeWork
278 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
279 rdf:type schema:CreativeWork
280 https://doi.org/10.3168/jds.2008-1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885396
281 rdf:type schema:CreativeWork
282 https://doi.org/10.3168/jds.2008-1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683381
283 rdf:type schema:CreativeWork
284 https://doi.org/10.3389/fgene.2011.00109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029934038
285 rdf:type schema:CreativeWork
286 https://doi.org/10.3835/plantgenome.2010.12.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447714
287 rdf:type schema:CreativeWork
288 https://doi.org/10.3835/plantgenome2010.04.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447771
289 rdf:type schema:CreativeWork
290 https://doi.org/10.3835/plantgenome2010.12.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091447873
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3835/plantgenome2012.07.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447828
293 rdf:type schema:CreativeWork
294 https://www.grid.ac/institutes/grid.1020.3 schema:alternateName University of New England
295 schema:name Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico
296 School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.418752.d schema:alternateName Colegio de Postgraduados
299 schema:name Colegio de Postgraduados, Montecillo, Mexico
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
302 schema:name Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...