Genomic-enabled prediction with classification algorithms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

L Ornella, P Pérez, E Tapia, J M González-Camacho, J Burgueño, X Zhang, S Singh, F S Vicente, D Bonnett, S Dreisigacker, R Singh, N Long, J Crossa

ABSTRACT

Pearson's correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression in the tails of the distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different trait-environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these algorithms for selecting individuals belonging to the best α=10, 15, 20, 25, 30, 35, 40% of the distribution was estimated using Cohen's kappa coefficient (κ) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis for α=15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used ρ as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with the response vector of the original training sets dichotomised using a given threshold. For α=15%, SVC-lin presented the highest κ coefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in 9 data sets) and the best RE in the same 13 data sets, with values ranging from 0.393 to 0.948 (statistically significant in 12 data sets). RR produced the best mean for both κ and RE in one data set (0.148 and 0.381, respectively). Regarding the wheat data sets, SVC-lin presented the best κ in 12 of the 16 data sets, with outcomes ranging from 0.280 to 0.580 (statistically significant in 4 data sets) and the best RE in 9 data sets ranging from 0.484 to 0.821 (statistically significant in 5 data sets). SVC-rbf (0.235), RR (0.265) and RHKS (0.422) gave the best κ in one data set each, while RHKS and BL tied for the last one (0.234). Finally, BL presented the best RE in two data sets (0.738 and 0.750), RFR (0.636) and SVC-rbf (0.617) in one and RHKS in the remaining three (0.502, 0.458 and 0.586). The difference between the performance of SVC-lin and that of the rest of the models was not so pronounced at higher percentiles of the distribution. The behaviour of regression and classification algorithms varied markedly when selection was done at different thresholds, that is, κ and RE for each algorithm depended strongly on the selection percentile. Based on the results, we propose classification method as a promising alternative for GS in plant breeding. More... »

PAGES

616

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hdy.2013.144

DOI

http://dx.doi.org/10.1038/hdy.2013.144

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028238819

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24424163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Datasets as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene-Environment Interaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triticum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zea mays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "French\u2013Argentine International Center for Information and Systems Sciences (CIFASIS), Rosario, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ornella", 
        "givenName": "L", 
        "id": "sg:person.01210431504.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210431504.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colegio de Postgraduados", 
          "id": "https://www.grid.ac/institutes/grid.418752.d", 
          "name": [
            "Colegio de Postgraduados, Montecillo, Edo. de M\u00e9xico, M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "P", 
        "id": "sg:person.0617307633.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617307633.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "French\u2013Argentine International Center for Information and Systems Sciences (CIFASIS), Rosario, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tapia", 
        "givenName": "E", 
        "id": "sg:person.0652706767.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652706767.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colegio de Postgraduados", 
          "id": "https://www.grid.ac/institutes/grid.418752.d", 
          "name": [
            "Colegio de Postgraduados, Montecillo, Edo. de M\u00e9xico, M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-Camacho", 
        "givenName": "J M", 
        "id": "sg:person.01315603121.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315603121.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "J", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "X", 
        "id": "sg:person.01370054024.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370054024.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "S", 
        "id": "sg:person.01126237306.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126237306.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vicente", 
        "givenName": "F S", 
        "id": "sg:person.010562340477.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010562340477.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnett", 
        "givenName": "D", 
        "id": "sg:person.0660376572.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660376572.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dreisigacker", 
        "givenName": "S", 
        "id": "sg:person.0633774530.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633774530.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "R", 
        "id": "sg:person.01122126436.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122126436.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "N", 
        "id": "sg:person.01266763441.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266763441.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), M\u00e9xico DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "J", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1534/genetics.112.141705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001900351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.141705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001900351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.151753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003979530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.151753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003979530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008398576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008398576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00694.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017663403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00694.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017663403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-012-1868-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018173298", 
          "https://doi.org/10.1007/s00122-012-1868-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-43-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018564148", 
          "https://doi.org/10.1186/1297-9686-43-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.049510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019052658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.049510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019052658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21219-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024127227", 
          "https://doi.org/10.1007/978-3-642-21219-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21219-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024127227", 
          "https://doi.org/10.1007/978-3-642-21219-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2013.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027840551", 
          "https://doi.org/10.1038/hdy.2013.16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.143313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034867521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.143313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034867521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2012.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044404004", 
          "https://doi.org/10.1038/hdy.2012.44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052787783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052787783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0376892997000088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053798761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0376892997000088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053798761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci049641u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci049641u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214508000000337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2011.tm10319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2009.11.0662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2011.06.0297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2011.06.0299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2010.04.0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2011.08.0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2012.07.0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102728208"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06", 
    "datePublishedReg": "2014-06-01", 
    "description": "Pearson's correlation coefficient (\u03c1) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding \u03c1 may not be very useful for assessing the quality of the regression in the tails of the distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different trait-environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these algorithms for selecting individuals belonging to the best \u03b1=10, 15, 20, 25, 30, 35, 40% of the distribution was estimated using Cohen's kappa coefficient (\u03ba) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis for \u03b1=15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used \u03c1 as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with the response vector of the original training sets dichotomised using a given threshold. For \u03b1=15%, SVC-lin presented the highest \u03ba coefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in 9 data sets) and the best RE in the same 13 data sets, with values ranging from 0.393 to 0.948 (statistically significant in 12 data sets). RR produced the best mean for both \u03ba and RE in one data set (0.148 and 0.381, respectively). Regarding the wheat data sets, SVC-lin presented the best \u03ba in 12 of the 16 data sets, with outcomes ranging from 0.280 to 0.580 (statistically significant in 4 data sets) and the best RE in 9 data sets ranging from 0.484 to 0.821 (statistically significant in 5 data sets). SVC-rbf (0.235), RR (0.265) and RHKS (0.422) gave the best \u03ba in one data set each, while RHKS and BL tied for the last one (0.234). Finally, BL presented the best RE in two data sets (0.738 and 0.750), RFR (0.636) and SVC-rbf (0.617) in one and RHKS in the remaining three (0.502, 0.458 and 0.586). The difference between the performance of SVC-lin and that of the rest of the models was not so pronounced at higher percentiles of the distribution. The behaviour of regression and classification algorithms varied markedly when selection was done at different thresholds, that is, \u03ba and RE for each algorithm depended strongly on the selection percentile. Based on the results, we propose classification method as a promising alternative for GS in plant breeding. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/hdy.2013.144", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "name": "Genomic-enabled prediction with classification algorithms", 
    "pagination": "616", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86861079e2f3b167efca6d557b02c85da1ead88a70446739c08f120293577d33"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24424163"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0373007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hdy.2013.144"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028238819"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hdy.2013.144", 
      "https://app.dimensions.ai/details/publication/pub.1028238819"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/hdy2013144"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.144'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.144'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.144'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hdy.2013.144'


 

This table displays all metadata directly associated to this object as RDF triples.

297 TRIPLES      21 PREDICATES      68 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hdy.2013.144 schema:about N38dc2954b7d249d5bfc0ac3df1e1679f
2 N3bda5b9105204e7da18edf3ff693d79c
3 N4b6cc9f4c248403a84e2802729e0ee41
4 N5d282e3d4d6a4354a3b4baac4ba7b34f
5 N66121a9df666428890bf6f9c70f88a37
6 N8ea84f9e72dc4b9eaa9a377ed5a85c3a
7 N99c960c2566243289f7e1d99b85dfe7d
8 Nace4b734cb5047189f95378075f80051
9 Ncb5a46daa74749f9997240cfc22370f3
10 Ne17dc3cf923c43cbb38694f6dfc1d8b5
11 Nf101fe6e4fd84a6ab5fd5cc6bea53f17
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N09b4bcf209ff4d1796d396b79bd956aa
15 schema:citation sg:pub.10.1007/978-3-642-21219-2_1
16 sg:pub.10.1007/bf00994018
17 sg:pub.10.1007/s00122-012-1868-9
18 sg:pub.10.1023/a:1010933404324
19 sg:pub.10.1038/hdy.2012.44
20 sg:pub.10.1038/hdy.2013.16
21 sg:pub.10.1186/1297-9686-43-7
22 https://app.dimensions.ai/details/publication/pub.1074795580
23 https://doi.org/10.1017/s0376892997000088
24 https://doi.org/10.1021/ci049641u
25 https://doi.org/10.1111/j.1439-0388.2007.00694.x
26 https://doi.org/10.1145/1656274.1656278
27 https://doi.org/10.1177/001316446002000104
28 https://doi.org/10.1198/016214508000000337
29 https://doi.org/10.1198/jasa.2011.tm10319
30 https://doi.org/10.1534/g3.112.003665
31 https://doi.org/10.1534/genetics.105.049510
32 https://doi.org/10.1534/genetics.107.084285
33 https://doi.org/10.1534/genetics.112.141705
34 https://doi.org/10.1534/genetics.112.143313
35 https://doi.org/10.1534/genetics.113.151753
36 https://doi.org/10.2135/cropsci2009.11.0662
37 https://doi.org/10.2135/cropsci2011.06.0297
38 https://doi.org/10.2135/cropsci2011.06.0299
39 https://doi.org/10.2307/3001968
40 https://doi.org/10.3835/plantgenome2010.04.0005
41 https://doi.org/10.3835/plantgenome2011.08.0024
42 https://doi.org/10.3835/plantgenome2012.07.0017
43 schema:datePublished 2014-06
44 schema:datePublishedReg 2014-06-01
45 schema:description Pearson's correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression in the tails of the distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different trait-environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these algorithms for selecting individuals belonging to the best α=10, 15, 20, 25, 30, 35, 40% of the distribution was estimated using Cohen's kappa coefficient (κ) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis for α=15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used ρ as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with the response vector of the original training sets dichotomised using a given threshold. For α=15%, SVC-lin presented the highest κ coefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in 9 data sets) and the best RE in the same 13 data sets, with values ranging from 0.393 to 0.948 (statistically significant in 12 data sets). RR produced the best mean for both κ and RE in one data set (0.148 and 0.381, respectively). Regarding the wheat data sets, SVC-lin presented the best κ in 12 of the 16 data sets, with outcomes ranging from 0.280 to 0.580 (statistically significant in 4 data sets) and the best RE in 9 data sets ranging from 0.484 to 0.821 (statistically significant in 5 data sets). SVC-rbf (0.235), RR (0.265) and RHKS (0.422) gave the best κ in one data set each, while RHKS and BL tied for the last one (0.234). Finally, BL presented the best RE in two data sets (0.738 and 0.750), RFR (0.636) and SVC-rbf (0.617) in one and RHKS in the remaining three (0.502, 0.458 and 0.586). The difference between the performance of SVC-lin and that of the rest of the models was not so pronounced at higher percentiles of the distribution. The behaviour of regression and classification algorithms varied markedly when selection was done at different thresholds, that is, κ and RE for each algorithm depended strongly on the selection percentile. Based on the results, we propose classification method as a promising alternative for GS in plant breeding.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N5ddf2157c81c40118925a4da9827c85c
50 N96e593a7d7194340bdfd0978c281a155
51 sg:journal.1017442
52 schema:name Genomic-enabled prediction with classification algorithms
53 schema:pagination 616
54 schema:productId N0cf70069690945428640947a6f4c0641
55 N1552aa6214c444288cf7a67a8fba0dae
56 N49244c739458444ab5cdc4a6c42e1c72
57 Nad6d0014a68246b29e936af3e0d5f388
58 Nc908fa8b5d1747d99a3b9353aa6e347f
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028238819
60 https://doi.org/10.1038/hdy.2013.144
61 schema:sdDatePublished 2019-04-10T23:31
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N8acd3c8d4a3d4c2f96b18c90ce99efb5
64 schema:url https://www.nature.com/articles/hdy2013144
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N054633ac8c0847faadd09ea635ffe519 schema:name French–Argentine International Center for Information and Systems Sciences (CIFASIS), Rosario, Argentina
69 rdf:type schema:Organization
70 N08fff3b83cfa4697aaed94819335ac7e rdf:first sg:person.01370054024.00
71 rdf:rest Nb68e9ccb3e554eb8ae803d7cd9e2ac14
72 N09b4bcf209ff4d1796d396b79bd956aa rdf:first sg:person.01210431504.62
73 rdf:rest Nb281e6660f994a9d864951171f2633f0
74 N0b21e877c62e425787b14a78fe0f991c rdf:first sg:person.0733536233.17
75 rdf:rest N08fff3b83cfa4697aaed94819335ac7e
76 N0cf70069690945428640947a6f4c0641 schema:name pubmed_id
77 schema:value 24424163
78 rdf:type schema:PropertyValue
79 N0debe31dc45441c297385222ba3028b0 rdf:first sg:person.0633774530.75
80 rdf:rest Nfb1f9e8eb38f4a7795c180b8938bf18f
81 N142ec45fbd9043c7bce114276b15e97b rdf:first sg:person.01274600533.83
82 rdf:rest rdf:nil
83 N1552aa6214c444288cf7a67a8fba0dae schema:name nlm_unique_id
84 schema:value 0373007
85 rdf:type schema:PropertyValue
86 N38dc2954b7d249d5bfc0ac3df1e1679f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Models, Genetic
88 rdf:type schema:DefinedTerm
89 N3bda5b9105204e7da18edf3ff693d79c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Regression Analysis
91 rdf:type schema:DefinedTerm
92 N3f1e387219864351b01fba51e6ddd22f rdf:first sg:person.0652706767.10
93 rdf:rest N72886fb1a6594cf8a3b80640ef61a3f6
94 N49244c739458444ab5cdc4a6c42e1c72 schema:name readcube_id
95 schema:value 86861079e2f3b167efca6d557b02c85da1ead88a70446739c08f120293577d33
96 rdf:type schema:PropertyValue
97 N4b6cc9f4c248403a84e2802729e0ee41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Environment
99 rdf:type schema:DefinedTerm
100 N51fd7eec38614f31a077de6b8b82fa9d rdf:first sg:person.01266763441.16
101 rdf:rest N142ec45fbd9043c7bce114276b15e97b
102 N5a0e4623ae4748b68e3441c4bea0f20d rdf:first sg:person.0660376572.93
103 rdf:rest N0debe31dc45441c297385222ba3028b0
104 N5d282e3d4d6a4354a3b4baac4ba7b34f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Genomics
106 rdf:type schema:DefinedTerm
107 N5ddf2157c81c40118925a4da9827c85c schema:volumeNumber 112
108 rdf:type schema:PublicationVolume
109 N5ddf52ba7b854812b09db9999ea15971 rdf:first sg:person.010562340477.97
110 rdf:rest N5a0e4623ae4748b68e3441c4bea0f20d
111 N66121a9df666428890bf6f9c70f88a37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Triticum
113 rdf:type schema:DefinedTerm
114 N72886fb1a6594cf8a3b80640ef61a3f6 rdf:first sg:person.01315603121.80
115 rdf:rest N0b21e877c62e425787b14a78fe0f991c
116 N8acd3c8d4a3d4c2f96b18c90ce99efb5 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N8ea84f9e72dc4b9eaa9a377ed5a85c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Selection, Genetic
120 rdf:type schema:DefinedTerm
121 N96e593a7d7194340bdfd0978c281a155 schema:issueNumber 6
122 rdf:type schema:PublicationIssue
123 N99c960c2566243289f7e1d99b85dfe7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Algorithms
125 rdf:type schema:DefinedTerm
126 Nace4b734cb5047189f95378075f80051 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Quantitative Trait, Heritable
128 rdf:type schema:DefinedTerm
129 Nad6d0014a68246b29e936af3e0d5f388 schema:name doi
130 schema:value 10.1038/hdy.2013.144
131 rdf:type schema:PropertyValue
132 Nb281e6660f994a9d864951171f2633f0 rdf:first sg:person.0617307633.01
133 rdf:rest N3f1e387219864351b01fba51e6ddd22f
134 Nb68e9ccb3e554eb8ae803d7cd9e2ac14 rdf:first sg:person.01126237306.11
135 rdf:rest N5ddf52ba7b854812b09db9999ea15971
136 Nc908fa8b5d1747d99a3b9353aa6e347f schema:name dimensions_id
137 schema:value pub.1028238819
138 rdf:type schema:PropertyValue
139 Ncb5a46daa74749f9997240cfc22370f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Datasets as Topic
141 rdf:type schema:DefinedTerm
142 Ne17dc3cf923c43cbb38694f6dfc1d8b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Zea mays
144 rdf:type schema:DefinedTerm
145 Nf101fe6e4fd84a6ab5fd5cc6bea53f17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Gene-Environment Interaction
147 rdf:type schema:DefinedTerm
148 Nf2cd0c60f54a440588490a461c940037 schema:name French–Argentine International Center for Information and Systems Sciences (CIFASIS), Rosario, Argentina
149 rdf:type schema:Organization
150 Nfb1f9e8eb38f4a7795c180b8938bf18f rdf:first sg:person.01122126436.15
151 rdf:rest N51fd7eec38614f31a077de6b8b82fa9d
152 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
153 schema:name Information and Computing Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
156 schema:name Artificial Intelligence and Image Processing
157 rdf:type schema:DefinedTerm
158 sg:journal.1017442 schema:issn 0018-067X
159 1365-2540
160 schema:name Heredity
161 rdf:type schema:Periodical
162 sg:person.010562340477.97 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
163 schema:familyName Vicente
164 schema:givenName F S
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010562340477.97
166 rdf:type schema:Person
167 sg:person.01122126436.15 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
168 schema:familyName Singh
169 schema:givenName R
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122126436.15
171 rdf:type schema:Person
172 sg:person.01126237306.11 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
173 schema:familyName Singh
174 schema:givenName S
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126237306.11
176 rdf:type schema:Person
177 sg:person.01210431504.62 schema:affiliation N054633ac8c0847faadd09ea635ffe519
178 schema:familyName Ornella
179 schema:givenName L
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210431504.62
181 rdf:type schema:Person
182 sg:person.01266763441.16 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
183 schema:familyName Long
184 schema:givenName N
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266763441.16
186 rdf:type schema:Person
187 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
188 schema:familyName Crossa
189 schema:givenName J
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
191 rdf:type schema:Person
192 sg:person.01315603121.80 schema:affiliation https://www.grid.ac/institutes/grid.418752.d
193 schema:familyName González-Camacho
194 schema:givenName J M
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315603121.80
196 rdf:type schema:Person
197 sg:person.01370054024.00 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
198 schema:familyName Zhang
199 schema:givenName X
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370054024.00
201 rdf:type schema:Person
202 sg:person.0617307633.01 schema:affiliation https://www.grid.ac/institutes/grid.418752.d
203 schema:familyName Pérez
204 schema:givenName P
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617307633.01
206 rdf:type schema:Person
207 sg:person.0633774530.75 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
208 schema:familyName Dreisigacker
209 schema:givenName S
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633774530.75
211 rdf:type schema:Person
212 sg:person.0652706767.10 schema:affiliation Nf2cd0c60f54a440588490a461c940037
213 schema:familyName Tapia
214 schema:givenName E
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652706767.10
216 rdf:type schema:Person
217 sg:person.0660376572.93 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
218 schema:familyName Bonnett
219 schema:givenName D
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660376572.93
221 rdf:type schema:Person
222 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
223 schema:familyName Burgueño
224 schema:givenName J
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
226 rdf:type schema:Person
227 sg:pub.10.1007/978-3-642-21219-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024127227
228 https://doi.org/10.1007/978-3-642-21219-2_1
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
231 https://doi.org/10.1007/bf00994018
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00122-012-1868-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018173298
234 https://doi.org/10.1007/s00122-012-1868-9
235 rdf:type schema:CreativeWork
236 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
237 https://doi.org/10.1023/a:1010933404324
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/hdy.2012.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044404004
240 https://doi.org/10.1038/hdy.2012.44
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/hdy.2013.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027840551
243 https://doi.org/10.1038/hdy.2013.16
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1297-9686-43-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018564148
246 https://doi.org/10.1186/1297-9686-43-7
247 rdf:type schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
249 https://doi.org/10.1017/s0376892997000088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053798761
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/ci049641u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401811
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1111/j.1439-0388.2007.00694.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017663403
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1177/001316446002000104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039619716
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1198/016214508000000337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198793
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1198/jasa.2011.tm10319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200749
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1534/g3.112.003665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052787783
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1534/genetics.105.049510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019052658
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1534/genetics.107.084285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008398576
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1534/genetics.112.141705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001900351
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1534/genetics.112.143313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034867521
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1534/genetics.113.151753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003979530
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2135/cropsci2009.11.0662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031095
276 rdf:type schema:CreativeWork
277 https://doi.org/10.2135/cropsci2011.06.0297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031547
278 rdf:type schema:CreativeWork
279 https://doi.org/10.2135/cropsci2011.06.0299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031548
280 rdf:type schema:CreativeWork
281 https://doi.org/10.2307/3001968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102728208
282 rdf:type schema:CreativeWork
283 https://doi.org/10.3835/plantgenome2010.04.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447771
284 rdf:type schema:CreativeWork
285 https://doi.org/10.3835/plantgenome2011.08.0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447805
286 rdf:type schema:CreativeWork
287 https://doi.org/10.3835/plantgenome2012.07.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447828
288 rdf:type schema:CreativeWork
289 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
290 schema:name Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA
291 rdf:type schema:Organization
292 https://www.grid.ac/institutes/grid.418752.d schema:alternateName Colegio de Postgraduados
293 schema:name Colegio de Postgraduados, Montecillo, Edo. de México, México DF, Mexico
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
296 schema:name Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), México DF, Mexico
297 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...