Large-scale SNP genotyping in crosses between outbred lines: how useful is it? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08

AUTHORS

M C Ledur, N Navarro, M Pérez-Enciso

ABSTRACT

Although genome-wide association (GWA) studies are not worth the effort in crosses between inbred lines, many crosses are actually made up of divergent yet outbred populations. Despite its relevance, however, this experimental setting has not been studied at a time when SNP microarrays are available in many species. To assess whether GWA can be useful in this setting, we performed combined coalescence--gene dropping simulations. We studied the influence of marker density, QTL effect and QTL allele frequency on power, false discovery rate (FDR) and accuracy. Our results suggest that GWA in outbred F(2) crosses is useful, especially in large populations. Under these circumstances, accuracy increased and FDR decreased as compared with classical linkage analysis. However, current SNP densities (in the order of 30-60 K SNPs/genome or equivalent to 10-20 SNPs per cM) may not be much better than linkage analysis and higher SNP densities may be required. SNP ascertainment had an important effect; the best option was to select SNPs as uniformly as possible without setting any restriction on allele frequency. Using only SNPs with fixed alternative alleles in each breed controlled false positive rate but was not useful to detect variability within lines. Finally, the most significant SNP was not necessarily the closest to the causal SNP, although the closest SNPs were usually above the significance threshold; thus, it is prudent to follow-up significant signals located in regions of interest even if they do not correspond to absolute maxima. More... »

PAGES

hdy2009149

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hdy.2009.149

DOI

http://dx.doi.org/10.1038/hdy.2009.149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011899004

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19844266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hybridization, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Department Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Aut\u00f2noma de Barcelona, Bellaterra, Spain", 
            "Embrapa Su\u00ednos e Aves, Conc\u00f3rdia, Santa Catarina, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ledur", 
        "givenName": "M C", 
        "id": "sg:person.01002754446.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002754446.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Department Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Aut\u00f2noma de Barcelona, Bellaterra, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Navarro", 
        "givenName": "N", 
        "id": "sg:person.01130622322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130622322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Department Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Aut\u00f2noma de Barcelona, Bellaterra, Spain", 
            "Institut Catal\u00e0 de Recerca i Estudis Avan\u00e7ats (ICREA), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez-Enciso", 
        "givenName": "M", 
        "id": "sg:person.01041433710.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng0508-489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000802607", 
          "https://doi.org/10.1038/ng0508-489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.031039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002128731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.031039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002128731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0198-19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005196464", 
          "https://doi.org/10.1038/ng0198-19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2004.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012768908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016461648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920208784340759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018104367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4107905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018883190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.8.080706.092408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020498983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021727310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2007.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032171294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2007.02019.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037154964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10709-004-2704-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042516490", 
          "https://doi.org/10.1007/s10709-004-2704-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042783804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ps/85.12.2079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044998545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2007.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052716211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/9642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052869833", 
          "https://doi.org/10.1038/9642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/9642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052869833", 
          "https://doi.org/10.1038/9642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052939465", 
          "https://doi.org/10.1038/nrg1523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052939465", 
          "https://doi.org/10.1038/nrg1523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1106927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5281.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/ijbs.3.192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073618658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075216830", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082535482", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "Although genome-wide association (GWA) studies are not worth the effort in crosses between inbred lines, many crosses are actually made up of divergent yet outbred populations. Despite its relevance, however, this experimental setting has not been studied at a time when SNP microarrays are available in many species. To assess whether GWA can be useful in this setting, we performed combined coalescence--gene dropping simulations. We studied the influence of marker density, QTL effect and QTL allele frequency on power, false discovery rate (FDR) and accuracy. Our results suggest that GWA in outbred F(2) crosses is useful, especially in large populations. Under these circumstances, accuracy increased and FDR decreased as compared with classical linkage analysis. However, current SNP densities (in the order of 30-60 K SNPs/genome or equivalent to 10-20 SNPs per cM) may not be much better than linkage analysis and higher SNP densities may be required. SNP ascertainment had an important effect; the best option was to select SNPs as uniformly as possible without setting any restriction on allele frequency. Using only SNPs with fixed alternative alleles in each breed controlled false positive rate but was not useful to detect variability within lines. Finally, the most significant SNP was not necessarily the closest to the causal SNP, although the closest SNPs were usually above the significance threshold; thus, it is prudent to follow-up significant signals located in regions of interest even if they do not correspond to absolute maxima.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/hdy.2009.149", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "105"
      }
    ], 
    "name": "Large-scale SNP genotyping in crosses between outbred lines: how useful is it?", 
    "pagination": "hdy2009149", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "38b199d307a41f28eb1b5f917a37dec9f7e1188d913319d8d3b7c60380333e29"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19844266"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0373007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hdy.2009.149"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011899004"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hdy.2009.149", 
      "https://app.dimensions.ai/details/publication/pub.1011899004"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99829_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/hdy2009149"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hdy.2009.149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hdy.2009.149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hdy.2009.149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hdy.2009.149'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      60 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hdy.2009.149 schema:about N20382d1b233b4fe289861160c700eaee
2 N2c1e0c47a2664c45b2d1242668b02930
3 N2ed9be178cbe4bb087be7014e3d43981
4 N41c7acfa6b8a4fd98e317c204c5f4f91
5 N504da4cda13c430a98c4149a02372275
6 N8e727d665f5f48d787104b0ed87cf38f
7 N900c48b8ff2d4f48bb1e70b732e7ceb8
8 Ndd0e6e06873644908e9e3cf154728e88
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author N19c8edbfd8cc4136ba71ac843c8f8d27
12 schema:citation sg:pub.10.1007/s10709-004-2704-1
13 sg:pub.10.1038/9642
14 sg:pub.10.1038/nature05911
15 sg:pub.10.1038/ng0198-19
16 sg:pub.10.1038/ng0508-489
17 sg:pub.10.1038/nrg1523
18 https://app.dimensions.ai/details/publication/pub.1075216830
19 https://app.dimensions.ai/details/publication/pub.1082535482
20 https://doi.org/10.1016/j.tplants.2004.05.005
21 https://doi.org/10.1016/j.tree.2007.09.008
22 https://doi.org/10.1016/j.tree.2007.09.011
23 https://doi.org/10.1093/bioinformatics/btm138
24 https://doi.org/10.1093/ps/85.12.2079
25 https://doi.org/10.1101/gr.4107905
26 https://doi.org/10.1111/j.1471-8286.2007.02019.x
27 https://doi.org/10.1126/science.1106927
28 https://doi.org/10.1126/science.273.5281.1516
29 https://doi.org/10.1146/annurev.genom.8.080706.092408
30 https://doi.org/10.1371/journal.pbio.0020109
31 https://doi.org/10.1371/journal.pbio.0050219
32 https://doi.org/10.1534/genetics.104.031039
33 https://doi.org/10.2174/138920208784340759
34 https://doi.org/10.7150/ijbs.3.192
35 schema:datePublished 2010-08
36 schema:datePublishedReg 2010-08-01
37 schema:description Although genome-wide association (GWA) studies are not worth the effort in crosses between inbred lines, many crosses are actually made up of divergent yet outbred populations. Despite its relevance, however, this experimental setting has not been studied at a time when SNP microarrays are available in many species. To assess whether GWA can be useful in this setting, we performed combined coalescence--gene dropping simulations. We studied the influence of marker density, QTL effect and QTL allele frequency on power, false discovery rate (FDR) and accuracy. Our results suggest that GWA in outbred F(2) crosses is useful, especially in large populations. Under these circumstances, accuracy increased and FDR decreased as compared with classical linkage analysis. However, current SNP densities (in the order of 30-60 K SNPs/genome or equivalent to 10-20 SNPs per cM) may not be much better than linkage analysis and higher SNP densities may be required. SNP ascertainment had an important effect; the best option was to select SNPs as uniformly as possible without setting any restriction on allele frequency. Using only SNPs with fixed alternative alleles in each breed controlled false positive rate but was not useful to detect variability within lines. Finally, the most significant SNP was not necessarily the closest to the causal SNP, although the closest SNPs were usually above the significance threshold; thus, it is prudent to follow-up significant signals located in regions of interest even if they do not correspond to absolute maxima.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N5285d3a616d14382b158979901c756b3
42 Nd5c7f58bc487443ea909f98e89bbdb4e
43 sg:journal.1017442
44 schema:name Large-scale SNP genotyping in crosses between outbred lines: how useful is it?
45 schema:pagination hdy2009149
46 schema:productId N211bbfcbb55c4f1bad5a1ac45d757ac7
47 N27175d67610d4f13addb479767370b4e
48 N4e4970e5d75946f8a17f7ab79e35be4a
49 N9f9b4e1649934a649e5cc321cab8c7bd
50 Na6835b75dad540cf8e0724d24fbdb9b3
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011899004
52 https://doi.org/10.1038/hdy.2009.149
53 schema:sdDatePublished 2019-04-11T09:37
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N4eeefd29e503409a8f50a7539c56607c
56 schema:url http://www.nature.com/articles/hdy2009149
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N19c8edbfd8cc4136ba71ac843c8f8d27 rdf:first sg:person.01002754446.02
61 rdf:rest N9cbec109f83141dc84f75f776d0f74de
62 N20382d1b233b4fe289861160c700eaee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Animals
64 rdf:type schema:DefinedTerm
65 N211bbfcbb55c4f1bad5a1ac45d757ac7 schema:name doi
66 schema:value 10.1038/hdy.2009.149
67 rdf:type schema:PropertyValue
68 N27175d67610d4f13addb479767370b4e schema:name readcube_id
69 schema:value 38b199d307a41f28eb1b5f917a37dec9f7e1188d913319d8d3b7c60380333e29
70 rdf:type schema:PropertyValue
71 N2c1e0c47a2664c45b2d1242668b02930 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Polymorphism, Single Nucleotide
73 rdf:type schema:DefinedTerm
74 N2dd3b1f3ea6f49a7b6e421ce3288b3e4 rdf:first sg:person.01041433710.67
75 rdf:rest rdf:nil
76 N2ed9be178cbe4bb087be7014e3d43981 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Genetic Linkage
78 rdf:type schema:DefinedTerm
79 N41c7acfa6b8a4fd98e317c204c5f4f91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Genotype
81 rdf:type schema:DefinedTerm
82 N4e4970e5d75946f8a17f7ab79e35be4a schema:name pubmed_id
83 schema:value 19844266
84 rdf:type schema:PropertyValue
85 N4eeefd29e503409a8f50a7539c56607c schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N504da4cda13c430a98c4149a02372275 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Genome-Wide Association Study
89 rdf:type schema:DefinedTerm
90 N5285d3a616d14382b158979901c756b3 schema:volumeNumber 105
91 rdf:type schema:PublicationVolume
92 N8e727d665f5f48d787104b0ed87cf38f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Quantitative Trait Loci
94 rdf:type schema:DefinedTerm
95 N900c48b8ff2d4f48bb1e70b732e7ceb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Gene Frequency
97 rdf:type schema:DefinedTerm
98 N9cbec109f83141dc84f75f776d0f74de rdf:first sg:person.01130622322.19
99 rdf:rest N2dd3b1f3ea6f49a7b6e421ce3288b3e4
100 N9f9b4e1649934a649e5cc321cab8c7bd schema:name nlm_unique_id
101 schema:value 0373007
102 rdf:type schema:PropertyValue
103 Na6835b75dad540cf8e0724d24fbdb9b3 schema:name dimensions_id
104 schema:value pub.1011899004
105 rdf:type schema:PropertyValue
106 Nd5c7f58bc487443ea909f98e89bbdb4e schema:issueNumber 2
107 rdf:type schema:PublicationIssue
108 Ndd0e6e06873644908e9e3cf154728e88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Hybridization, Genetic
110 rdf:type schema:DefinedTerm
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
115 schema:name Genetics
116 rdf:type schema:DefinedTerm
117 sg:journal.1017442 schema:issn 0018-067X
118 1365-2540
119 schema:name Heredity
120 rdf:type schema:Periodical
121 sg:person.01002754446.02 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
122 schema:familyName Ledur
123 schema:givenName M C
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002754446.02
125 rdf:type schema:Person
126 sg:person.01041433710.67 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
127 schema:familyName Pérez-Enciso
128 schema:givenName M
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041433710.67
130 rdf:type schema:Person
131 sg:person.01130622322.19 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
132 schema:familyName Navarro
133 schema:givenName N
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130622322.19
135 rdf:type schema:Person
136 sg:pub.10.1007/s10709-004-2704-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516490
137 https://doi.org/10.1007/s10709-004-2704-1
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/9642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052869833
140 https://doi.org/10.1038/9642
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
143 https://doi.org/10.1038/nature05911
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ng0198-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005196464
146 https://doi.org/10.1038/ng0198-19
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ng0508-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802607
149 https://doi.org/10.1038/ng0508-489
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nrg1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052939465
152 https://doi.org/10.1038/nrg1523
153 rdf:type schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1075216830 schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1082535482 schema:CreativeWork
156 https://doi.org/10.1016/j.tplants.2004.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012768908
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.tree.2007.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032171294
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.tree.2007.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052716211
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/bioinformatics/btm138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042783804
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/ps/85.12.2079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044998545
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1101/gr.4107905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018883190
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/j.1471-8286.2007.02019.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037154964
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.1106927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451356
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.273.5281.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554106
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1146/annurev.genom.8.080706.092408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020498983
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1371/journal.pbio.0020109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016461648
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1371/journal.pbio.0050219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021727310
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1534/genetics.104.031039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002128731
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2174/138920208784340759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018104367
183 rdf:type schema:CreativeWork
184 https://doi.org/10.7150/ijbs.3.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073618658
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
187 schema:name Department Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, Spain
188 Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.7080.f schema:alternateName Autonomous University of Barcelona
191 schema:name Department Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, Spain
192 Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...