A model for the estimation of outcrossing rate and gene frequencies using n independent loci View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1981-08

AUTHORS

Kermit Ritland, Subodh Jain

ABSTRACT

A mixed mating model for many unlinked loci is described. A procedure for estimation of the model parameters (outcrossing rate and gene frequencies), based on a multilocus maximum likelihood equation, is discussed and analyzed for bias, variance, and robustness. Genotypic data from families of known or unknown maternal parentage, or data from progenies of known maternal parentage, are used for estimation. The procedure is applicable to dominant or co-dominant Mendelian genes with two or three alleles per locus, and should be particularly useful in studies where the effort in scoring more loci is less than the effort in scoring more progeny. Variances of the multilocus estimates of outcrossing rate and pollen pool gene frequencies decrease when more loci are included in the estimation. Monte Carlo simulations showed the estimates to be unbiased when model assumptions are not violated, but the bias introduced by various violations is reduced when more loci are included in the estimate. Often the variance of a three or four locus estimate closely approaches the minimum variance possible (the variance of an estimate using infinitely many loci), setting a practical limit to the number of loci needed for a nearly minimum variance estimate. An example from some work on Limnanthes is presented to illustrate the use of multilocus model and its fit to data from natural populations. More... »

PAGES

hdy198157

Journal

TITLE

Heredity

ISSUE

1

VOLUME

47

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hdy.1981.57

DOI

http://dx.doi.org/10.1038/hdy.1981.57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012525853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ritland", 
        "givenName": "Kermit", 
        "id": "sg:person.01216716161.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216716161.02"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Subodh", 
        "id": "sg:person.01225056675.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225056675.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01507467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010817575", 
          "https://doi.org/10.1007/bf01507467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01507467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010817575", 
          "https://doi.org/10.1007/bf01507467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.78.2.1298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018042091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1978.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021692429", 
          "https://doi.org/10.1038/hdy.1978.63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1978.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021692429", 
          "https://doi.org/10.1038/hdy.1978.63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(74)90060-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027594612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600049558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034826874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600049558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034826874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1956.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038754834", 
          "https://doi.org/10.1038/hdy.1956.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1956.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038754834", 
          "https://doi.org/10.1038/hdy.1956.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(79)90025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044503698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672300013446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053934173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672300013446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053934173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1979.0011183x001900010006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069018119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1218434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069399316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074863260", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358510", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358882", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358950", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1963.tb03303.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085725419"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-08", 
    "datePublishedReg": "1981-08-01", 
    "description": "A mixed mating model for many unlinked loci is described. A procedure for estimation of the model parameters (outcrossing rate and gene frequencies), based on a multilocus maximum likelihood equation, is discussed and analyzed for bias, variance, and robustness. Genotypic data from families of known or unknown maternal parentage, or data from progenies of known maternal parentage, are used for estimation. The procedure is applicable to dominant or co-dominant Mendelian genes with two or three alleles per locus, and should be particularly useful in studies where the effort in scoring more loci is less than the effort in scoring more progeny. Variances of the multilocus estimates of outcrossing rate and pollen pool gene frequencies decrease when more loci are included in the estimation. Monte Carlo simulations showed the estimates to be unbiased when model assumptions are not violated, but the bias introduced by various violations is reduced when more loci are included in the estimate. Often the variance of a three or four locus estimate closely approaches the minimum variance possible (the variance of an estimate using infinitely many loci), setting a practical limit to the number of loci needed for a nearly minimum variance estimate. An example from some work on Limnanthes is presented to illustrate the use of multilocus model and its fit to data from natural populations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/hdy.1981.57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "A model for the estimation of outcrossing rate and gene frequencies using n independent loci", 
    "pagination": "hdy198157", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3bad0f5a1376168de6a118a48cdf1b4e6eecce70f2b812829d0f3baacd01e26c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hdy.1981.57"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012525853"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hdy.1981.57", 
      "https://app.dimensions.ai/details/publication/pub.1012525853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118344_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/hdy198157"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hdy.1981.57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hdy.1981.57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hdy.1981.57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hdy.1981.57'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hdy.1981.57 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N4c45d44cdfe1427e8de4d1a57816ebe1
4 schema:citation sg:pub.10.1007/bf01507467
5 sg:pub.10.1038/hdy.1956.3
6 sg:pub.10.1038/hdy.1978.63
7 https://app.dimensions.ai/details/publication/pub.1074863260
8 https://app.dimensions.ai/details/publication/pub.1077358510
9 https://app.dimensions.ai/details/publication/pub.1077358882
10 https://app.dimensions.ai/details/publication/pub.1077358950
11 https://doi.org/10.1016/0040-5809(74)90060-4
12 https://doi.org/10.1016/0040-5809(79)90025-x
13 https://doi.org/10.1017/s0016672300013446
14 https://doi.org/10.1017/s0021859600049558
15 https://doi.org/10.1073/pnas.78.2.1298
16 https://doi.org/10.1111/j.1558-5646.1963.tb03303.x
17 https://doi.org/10.2135/cropsci1979.0011183x001900010006x
18 https://doi.org/10.2307/1218434
19 https://doi.org/10.2307/2529716
20 schema:datePublished 1981-08
21 schema:datePublishedReg 1981-08-01
22 schema:description A mixed mating model for many unlinked loci is described. A procedure for estimation of the model parameters (outcrossing rate and gene frequencies), based on a multilocus maximum likelihood equation, is discussed and analyzed for bias, variance, and robustness. Genotypic data from families of known or unknown maternal parentage, or data from progenies of known maternal parentage, are used for estimation. The procedure is applicable to dominant or co-dominant Mendelian genes with two or three alleles per locus, and should be particularly useful in studies where the effort in scoring more loci is less than the effort in scoring more progeny. Variances of the multilocus estimates of outcrossing rate and pollen pool gene frequencies decrease when more loci are included in the estimation. Monte Carlo simulations showed the estimates to be unbiased when model assumptions are not violated, but the bias introduced by various violations is reduced when more loci are included in the estimate. Often the variance of a three or four locus estimate closely approaches the minimum variance possible (the variance of an estimate using infinitely many loci), setting a practical limit to the number of loci needed for a nearly minimum variance estimate. An example from some work on Limnanthes is presented to illustrate the use of multilocus model and its fit to data from natural populations.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N3ed10f43567a46408c9d094721ee908b
27 Nf08919d95a64463c8a44952e1362c034
28 sg:journal.1017442
29 schema:name A model for the estimation of outcrossing rate and gene frequencies using n independent loci
30 schema:pagination hdy198157
31 schema:productId N3078fcadbdd4424e8e5ac1262ec698b7
32 N312249c79b06455bb111600fc121b8cc
33 N5447e13a669a4eaca688065adc0fd682
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012525853
35 https://doi.org/10.1038/hdy.1981.57
36 schema:sdDatePublished 2019-04-11T12:07
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N656f45d2bee94333a1d47b251883f768
39 schema:url http://www.nature.com/articles/hdy198157
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N3078fcadbdd4424e8e5ac1262ec698b7 schema:name dimensions_id
44 schema:value pub.1012525853
45 rdf:type schema:PropertyValue
46 N312249c79b06455bb111600fc121b8cc schema:name doi
47 schema:value 10.1038/hdy.1981.57
48 rdf:type schema:PropertyValue
49 N3ed10f43567a46408c9d094721ee908b schema:volumeNumber 47
50 rdf:type schema:PublicationVolume
51 N4c45d44cdfe1427e8de4d1a57816ebe1 rdf:first sg:person.01216716161.02
52 rdf:rest Nc30e0b370fae4376a773a29ee505da2a
53 N5447e13a669a4eaca688065adc0fd682 schema:name readcube_id
54 schema:value 3bad0f5a1376168de6a118a48cdf1b4e6eecce70f2b812829d0f3baacd01e26c
55 rdf:type schema:PropertyValue
56 N656f45d2bee94333a1d47b251883f768 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nc30e0b370fae4376a773a29ee505da2a rdf:first sg:person.01225056675.88
59 rdf:rest rdf:nil
60 Nf08919d95a64463c8a44952e1362c034 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
63 schema:name Biological Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
66 schema:name Genetics
67 rdf:type schema:DefinedTerm
68 sg:journal.1017442 schema:issn 0018-067X
69 1365-2540
70 schema:name Heredity
71 rdf:type schema:Periodical
72 sg:person.01216716161.02 schema:familyName Ritland
73 schema:givenName Kermit
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216716161.02
75 rdf:type schema:Person
76 sg:person.01225056675.88 schema:familyName Jain
77 schema:givenName Subodh
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225056675.88
79 rdf:type schema:Person
80 sg:pub.10.1007/bf01507467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010817575
81 https://doi.org/10.1007/bf01507467
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/hdy.1956.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038754834
84 https://doi.org/10.1038/hdy.1956.3
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/hdy.1978.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021692429
87 https://doi.org/10.1038/hdy.1978.63
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1074863260 schema:CreativeWork
90 https://app.dimensions.ai/details/publication/pub.1077358510 schema:CreativeWork
91 https://app.dimensions.ai/details/publication/pub.1077358882 schema:CreativeWork
92 https://app.dimensions.ai/details/publication/pub.1077358950 schema:CreativeWork
93 https://doi.org/10.1016/0040-5809(74)90060-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027594612
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0040-5809(79)90025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044503698
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1017/s0016672300013446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053934173
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/s0021859600049558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034826874
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1073/pnas.78.2.1298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018042091
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1111/j.1558-5646.1963.tb03303.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085725419
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2135/cropsci1979.0011183x001900010006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069018119
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2307/1218434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069399316
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2307/2529716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975332
110 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...