The power of the classical twin study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1978-02

AUTHORS

N G Martin, L J Eaves, M J Kearsey, P Davies

ABSTRACT

A method based on the non-central chi-square distribution is developed for the calculation of sample sizes required to reject, with given probability, models of variation when they are “ wrong ”. The method is illustrated with reference to simple alternative models of variation in MZ and DZ twins reared together. Simulation of twin experiments finds the empirical power in good agreement with that predicted by the method. Tables are produced showing the sample sizes required for 95 per cent rejection at the 5 per cent level of inappropriate models of variation. For equivalent cases it is always found easier to reject an inappropriate simple genetical model of variation than an inappropriate simple environmental model. For several frequently encountered cases, more than 600 pairs of twins would be required to reject inappropriate alternative models. The optimum proportion of MZ and DZ twins in a sample will vary with the “true” model of variation but is most likely to be between two-thirds and one-half of DZ twin pairs. More... »

PAGES

hdy197810

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/hdy.1978.10

DOI

http://dx.doi.org/10.1038/hdy.1978.10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011399033

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/272366


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Twins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Martin", 
        "givenName": "N G", 
        "type": "Person"
      }, 
      {
        "familyName": "Eaves", 
        "givenName": "L J", 
        "type": "Person"
      }, 
      {
        "familyName": "Kearsey", 
        "givenName": "M J", 
        "type": "Person"
      }, 
      {
        "familyName": "Davies", 
        "givenName": "P", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hdy.1976.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754186", 
          "https://doi.org/10.1038/hdy.1976.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1976.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754186", 
          "https://doi.org/10.1038/hdy.1976.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1973.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001035210", 
          "https://doi.org/10.1038/hdy.1973.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1973.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001035210", 
          "https://doi.org/10.1038/hdy.1973.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1977.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001649853", 
          "https://doi.org/10.1038/hdy.1977.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1977.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001649853", 
          "https://doi.org/10.1038/hdy.1977.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1003585104", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3404-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003585104", 
          "https://doi.org/10.1007/978-1-4899-3404-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3404-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003585104", 
          "https://doi.org/10.1007/978-1-4899-3404-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1969.tb00426.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006620343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1970.tb00443.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006725445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1977.tb00722.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009744821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1975.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011600621", 
          "https://doi.org/10.1038/hdy.1975.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1975.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011600621", 
          "https://doi.org/10.1038/hdy.1975.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1975.tb00125.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013576630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1970.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015241384", 
          "https://doi.org/10.1038/hdy.1970.61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1970.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015241384", 
          "https://doi.org/10.1038/hdy.1970.61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0029135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016076574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0032182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027269653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01070218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030193160", 
          "https://doi.org/10.1007/bf01070218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01070218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030193160", 
          "https://doi.org/10.1007/bf01070218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/263314a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030892738", 
          "https://doi.org/10.1038/263314a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0076862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036926011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01067145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037916048", 
          "https://doi.org/10.1007/bf01067145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/240084a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047538492", 
          "https://doi.org/10.1038/240084a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1971.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052450506", 
          "https://doi.org/10.1038/hdy.1971.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1971.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052450506", 
          "https://doi.org/10.1038/hdy.1971.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021932000000493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053747952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.174.4016.1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062504038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177706453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2406136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069915396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077356601", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01065758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080629861", 
          "https://doi.org/10.1007/bf01065758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1959.tb03043.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085732985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2344924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103089213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2344924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103089213"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-02", 
    "datePublishedReg": "1978-02-01", 
    "description": "A method based on the non-central chi-square distribution is developed for the calculation of sample sizes required to reject, with given probability, models of variation when they are \u201c wrong \u201d. The method is illustrated with reference to simple alternative models of variation in MZ and DZ twins reared together. Simulation of twin experiments finds the empirical power in good agreement with that predicted by the method. Tables are produced showing the sample sizes required for 95 per cent rejection at the 5 per cent level of inappropriate models of variation. For equivalent cases it is always found easier to reject an inappropriate simple genetical model of variation than an inappropriate simple environmental model. For several frequently encountered cases, more than 600 pairs of twins would be required to reject inappropriate alternative models. The optimum proportion of MZ and DZ twins in a sample will vary with the \u201ctrue\u201d model of variation but is most likely to be between two-thirds and one-half of DZ twin pairs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/hdy.1978.10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "The power of the classical twin study", 
    "pagination": "hdy197810", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "364f128ebf8e96dde1299636d36edfab8f3731101185d9b9ed51bdbb765ac326"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "272366"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0373007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/hdy.1978.10"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011399033"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/hdy.1978.10", 
      "https://app.dimensions.ai/details/publication/pub.1011399033"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53984_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/hdy197810"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/hdy.1978.10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/hdy.1978.10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/hdy.1978.10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/hdy.1978.10'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      64 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/hdy.1978.10 schema:about N18a7307286e2421f9f1380b13b58cd08
2 N540fdb75c6554e20845d8441daabf271
3 N56af7e9725834fd58fd946a34ffd921c
4 N6f847f7220394753aa26d8ac883ed3ff
5 N97efe3e698424c7d9c50226b1191840c
6 Na6e63c20912247728de2df97db462527
7 Nb3b615d86a6547239e1a5863748783b3
8 Nc5fcd5c9ec714861ae3a156782846a0a
9 anzsrc-for:01
10 anzsrc-for:0104
11 schema:author N9a67d6fa49b444d9854d692283375c36
12 schema:citation sg:pub.10.1007/978-1-4899-3404-8
13 sg:pub.10.1007/bf01065758
14 sg:pub.10.1007/bf01067145
15 sg:pub.10.1007/bf01070218
16 sg:pub.10.1038/240084a0
17 sg:pub.10.1038/263314a0
18 sg:pub.10.1038/hdy.1970.61
19 sg:pub.10.1038/hdy.1971.27
20 sg:pub.10.1038/hdy.1973.22
21 sg:pub.10.1038/hdy.1975.14
22 sg:pub.10.1038/hdy.1976.25
23 sg:pub.10.1038/hdy.1977.95
24 https://app.dimensions.ai/details/publication/pub.1003585104
25 https://app.dimensions.ai/details/publication/pub.1077356601
26 https://doi.org/10.1017/s0021932000000493
27 https://doi.org/10.1037/h0029135
28 https://doi.org/10.1037/h0032182
29 https://doi.org/10.1037/h0076862
30 https://doi.org/10.1111/j.1469-1809.1975.tb00125.x
31 https://doi.org/10.1111/j.1558-5646.1959.tb03043.x
32 https://doi.org/10.1111/j.2044-8317.1969.tb00426.x
33 https://doi.org/10.1111/j.2044-8317.1970.tb00443.x
34 https://doi.org/10.1111/j.2044-8317.1977.tb00722.x
35 https://doi.org/10.1126/science.174.4016.1285
36 https://doi.org/10.1214/aoms/1177706453
37 https://doi.org/10.2307/2344924
38 https://doi.org/10.2307/2406136
39 schema:datePublished 1978-02
40 schema:datePublishedReg 1978-02-01
41 schema:description A method based on the non-central chi-square distribution is developed for the calculation of sample sizes required to reject, with given probability, models of variation when they are “ wrong ”. The method is illustrated with reference to simple alternative models of variation in MZ and DZ twins reared together. Simulation of twin experiments finds the empirical power in good agreement with that predicted by the method. Tables are produced showing the sample sizes required for 95 per cent rejection at the 5 per cent level of inappropriate models of variation. For equivalent cases it is always found easier to reject an inappropriate simple genetical model of variation than an inappropriate simple environmental model. For several frequently encountered cases, more than 600 pairs of twins would be required to reject inappropriate alternative models. The optimum proportion of MZ and DZ twins in a sample will vary with the “true” model of variation but is most likely to be between two-thirds and one-half of DZ twin pairs.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N50ab4347bd464f37b6acea82508ecd4d
46 N7cb1db2f812a4629977ccb2abce67624
47 sg:journal.1017442
48 schema:name The power of the classical twin study
49 schema:pagination hdy197810
50 schema:productId N257e85cdcd004e3a872a2d80af17e6fd
51 N33d3b7c72b26408a82e9b9a6e7b7fbf7
52 N4bf37a3eaa7f407f9c5b39aaa4551349
53 N6ee7daaec2314e4a8c9b5a0426110483
54 N918aad877ee94fc884f2faaa6707ca41
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011399033
56 https://doi.org/10.1038/hdy.1978.10
57 schema:sdDatePublished 2019-04-11T12:11
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N66bc93acc86c4e38b627a1542ef619e3
60 schema:url http://www.nature.com/articles/hdy197810
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N18a7307286e2421f9f1380b13b58cd08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Twins
66 rdf:type schema:DefinedTerm
67 N257e85cdcd004e3a872a2d80af17e6fd schema:name readcube_id
68 schema:value 364f128ebf8e96dde1299636d36edfab8f3731101185d9b9ed51bdbb765ac326
69 rdf:type schema:PropertyValue
70 N33d3b7c72b26408a82e9b9a6e7b7fbf7 schema:name doi
71 schema:value 10.1038/hdy.1978.10
72 rdf:type schema:PropertyValue
73 N46810fe77a5f4c4ea5703a04cb445709 rdf:first N9d35c3a02bd54e83b214b7632470122b
74 rdf:rest N54f62f2f0d4743fea012895dc1d9ae0d
75 N4bf37a3eaa7f407f9c5b39aaa4551349 schema:name nlm_unique_id
76 schema:value 0373007
77 rdf:type schema:PropertyValue
78 N50ab4347bd464f37b6acea82508ecd4d schema:volumeNumber 40
79 rdf:type schema:PublicationVolume
80 N540fdb75c6554e20845d8441daabf271 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Mathematics
82 rdf:type schema:DefinedTerm
83 N54f62f2f0d4743fea012895dc1d9ae0d rdf:first N9536d029a9184559ac9c94485257cf9e
84 rdf:rest Nc71f5111895f4d8d97370eb50dde1363
85 N56af7e9725834fd58fd946a34ffd921c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Humans
87 rdf:type schema:DefinedTerm
88 N66bc93acc86c4e38b627a1542ef619e3 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N6ee7daaec2314e4a8c9b5a0426110483 schema:name pubmed_id
91 schema:value 272366
92 rdf:type schema:PropertyValue
93 N6f847f7220394753aa26d8ac883ed3ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Pregnancy
95 rdf:type schema:DefinedTerm
96 N785e2f6689654f3b8ebc84e44ac7dd33 schema:familyName Martin
97 schema:givenName N G
98 rdf:type schema:Person
99 N7cb1db2f812a4629977ccb2abce67624 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N918aad877ee94fc884f2faaa6707ca41 schema:name dimensions_id
102 schema:value pub.1011399033
103 rdf:type schema:PropertyValue
104 N9536d029a9184559ac9c94485257cf9e schema:familyName Kearsey
105 schema:givenName M J
106 rdf:type schema:Person
107 N97efe3e698424c7d9c50226b1191840c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genetic Variation
109 rdf:type schema:DefinedTerm
110 N9a67d6fa49b444d9854d692283375c36 rdf:first N785e2f6689654f3b8ebc84e44ac7dd33
111 rdf:rest N46810fe77a5f4c4ea5703a04cb445709
112 N9d35c3a02bd54e83b214b7632470122b schema:familyName Eaves
113 schema:givenName L J
114 rdf:type schema:Person
115 Na6e63c20912247728de2df97db462527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Probability
117 rdf:type schema:DefinedTerm
118 Nb3b615d86a6547239e1a5863748783b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Female
120 rdf:type schema:DefinedTerm
121 Nc5fcd5c9ec714861ae3a156782846a0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Models, Biological
123 rdf:type schema:DefinedTerm
124 Nc71f5111895f4d8d97370eb50dde1363 rdf:first Ne0b11123b341484dbf72aec2cf39891e
125 rdf:rest rdf:nil
126 Ne0b11123b341484dbf72aec2cf39891e schema:familyName Davies
127 schema:givenName P
128 rdf:type schema:Person
129 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
130 schema:name Mathematical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
133 schema:name Statistics
134 rdf:type schema:DefinedTerm
135 sg:journal.1017442 schema:issn 0018-067X
136 1365-2540
137 schema:name Heredity
138 rdf:type schema:Periodical
139 sg:pub.10.1007/978-1-4899-3404-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003585104
140 https://doi.org/10.1007/978-1-4899-3404-8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf01065758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080629861
143 https://doi.org/10.1007/bf01065758
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf01067145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916048
146 https://doi.org/10.1007/bf01067145
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf01070218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030193160
149 https://doi.org/10.1007/bf01070218
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/240084a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047538492
152 https://doi.org/10.1038/240084a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/263314a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030892738
155 https://doi.org/10.1038/263314a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/hdy.1970.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015241384
158 https://doi.org/10.1038/hdy.1970.61
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/hdy.1971.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052450506
161 https://doi.org/10.1038/hdy.1971.27
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/hdy.1973.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001035210
164 https://doi.org/10.1038/hdy.1973.22
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/hdy.1975.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011600621
167 https://doi.org/10.1038/hdy.1975.14
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/hdy.1976.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754186
170 https://doi.org/10.1038/hdy.1976.25
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/hdy.1977.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001649853
173 https://doi.org/10.1038/hdy.1977.95
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1003585104 schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1077356601 schema:CreativeWork
177 https://doi.org/10.1017/s0021932000000493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053747952
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1037/h0029135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016076574
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1037/h0032182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027269653
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1037/h0076862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036926011
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/j.1469-1809.1975.tb00125.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013576630
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1558-5646.1959.tb03043.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085732985
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.2044-8317.1969.tb00426.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006620343
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.2044-8317.1970.tb00443.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006725445
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.2044-8317.1977.tb00722.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009744821
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.174.4016.1285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062504038
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1214/aoms/1177706453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401036
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2307/2344924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103089213
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2307/2406136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069915396
202 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...