Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-09

AUTHORS

S Chernousova, M Epple

ABSTRACT

The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2–3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application. More... »

PAGES

282-289

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/gt.2017.13

DOI

http://dx.doi.org/10.1038/gt.2017.13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083850728

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28218744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcium Phosphates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Silencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Green Fluorescent Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HeLa Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfection", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernousova", 
        "givenName": "S", 
        "id": "sg:person.010155724315.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155724315.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Epple", 
        "givenName": "M", 
        "id": "sg:person.011342402346.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1208/s12248-010-9210-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006062010", 
          "https://doi.org/10.1208/s12248-010-9210-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321778", 
          "https://doi.org/10.1038/srep25879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-76713-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011085601", 
          "https://doi.org/10.1007/978-0-387-76713-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021098775", 
          "https://doi.org/10.1038/nature07758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12977-016-0258-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033996396", 
          "https://doi.org/10.1186/s12977-016-0258-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-010-0364-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001765019", 
          "https://doi.org/10.1007/s11095-010-0364-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-009-4159-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042696783", 
          "https://doi.org/10.1007/s10853-009-4159-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-09", 
    "datePublishedReg": "2017-03-09", 
    "description": "The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5\u2009h in the case of nanoparticles and after 4\u2009h in the case of Lipofectamine. The corresponding times for gene silencing were 5\u2009h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2\u20133\u2009h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/gt.2017.13", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "calcium phosphate nanoparticles", 
      "phosphate nanoparticles", 
      "expression of EGFP", 
      "case of nanoparticles", 
      "liposomal transfection agent", 
      "transfection agents", 
      "nanoparticles", 
      "vivo applications", 
      "suitable vector", 
      "Lipofectamine", 
      "delivery system", 
      "green fluorescent protein", 
      "nucleic acids", 
      "HeLa cells", 
      "fluorescent protein", 
      "EGFP", 
      "live-cell imaging", 
      "efficiency", 
      "transfection", 
      "processing of DNA", 
      "DNA", 
      "applications", 
      "siRNA", 
      "imaging", 
      "cells", 
      "vector", 
      "cytotoxicity", 
      "processing", 
      "genes", 
      "acid", 
      "system", 
      "agents", 
      "RNA", 
      "time", 
      "protein", 
      "latter case", 
      "incubation", 
      "expression", 
      "comparison", 
      "division", 
      "corresponding time", 
      "cases", 
      "cell division", 
      "high dose", 
      "dose"
    ], 
    "name": "Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent", 
    "pagination": "282-289", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083850728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/gt.2017.13"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28218744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/gt.2017.13", 
      "https://app.dimensions.ai/details/publication/pub.1083850728"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_756.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/gt.2017.13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      87 URIs      72 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/gt.2017.13 schema:about N3484b01212d349f4851bd6bbbbf979a0
2 N42d08f2cacff4135a9af039d0d6511e3
3 N6727ab0a3d074cc0bd63ee2ff70606de
4 N7583635592674080b878a809f60f9771
5 N8b99ae3391a54d6aa59636b41a69c085
6 N8cd631bdf50e460d8efefc77f221ed40
7 Nb56136df3a384e358ba63624e7565240
8 Nbe2205ce6b3746ab9b495cce67e3af84
9 Nca086755d965465ca35ef2e318579ed5
10 Nfa8ea6a96ee54ac2b52903c98f2aea82
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N9b1db45d640544e0a10be5e59e271615
14 schema:citation sg:pub.10.1007/978-0-387-76713-0_4
15 sg:pub.10.1007/s10853-009-4159-3
16 sg:pub.10.1007/s11095-010-0364-7
17 sg:pub.10.1038/nature07758
18 sg:pub.10.1038/srep25879
19 sg:pub.10.1186/s12977-016-0258-9
20 sg:pub.10.1208/s12248-010-9210-4
21 schema:datePublished 2017-03-09
22 schema:datePublishedReg 2017-03-09
23 schema:description The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2–3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N0e3a0d976de44a5ab90aed11faeeb14b
27 N5cb301387af540ed8ea1ea373ce033b8
28 sg:journal.1105638
29 schema:keywords DNA
30 EGFP
31 HeLa cells
32 Lipofectamine
33 RNA
34 acid
35 agents
36 applications
37 calcium phosphate nanoparticles
38 case of nanoparticles
39 cases
40 cell division
41 cells
42 comparison
43 corresponding time
44 cytotoxicity
45 delivery system
46 division
47 dose
48 efficiency
49 expression
50 expression of EGFP
51 fluorescent protein
52 genes
53 green fluorescent protein
54 high dose
55 imaging
56 incubation
57 latter case
58 liposomal transfection agent
59 live-cell imaging
60 nanoparticles
61 nucleic acids
62 phosphate nanoparticles
63 processing
64 processing of DNA
65 protein
66 siRNA
67 suitable vector
68 system
69 time
70 transfection
71 transfection agents
72 vector
73 vivo applications
74 schema:name Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent
75 schema:pagination 282-289
76 schema:productId N3bf136eceea04262936380de6d3f27be
77 N736e99e16cd04843aac1448e34975ac6
78 Nc6ed740843f549369fea5ce7b5f6eb39
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083850728
80 https://doi.org/10.1038/gt.2017.13
81 schema:sdDatePublished 2022-10-01T06:44
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Na1198bbd5ec04adfa5801bbcbd26256a
84 schema:url https://doi.org/10.1038/gt.2017.13
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0e3a0d976de44a5ab90aed11faeeb14b schema:issueNumber 5
89 rdf:type schema:PublicationIssue
90 N3484b01212d349f4851bd6bbbbf979a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name HeLa Cells
92 rdf:type schema:DefinedTerm
93 N3bf136eceea04262936380de6d3f27be schema:name pubmed_id
94 schema:value 28218744
95 rdf:type schema:PropertyValue
96 N42d08f2cacff4135a9af039d0d6511e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Nanoparticles
98 rdf:type schema:DefinedTerm
99 N5cb301387af540ed8ea1ea373ce033b8 schema:volumeNumber 24
100 rdf:type schema:PublicationVolume
101 N6727ab0a3d074cc0bd63ee2ff70606de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Mitosis
103 rdf:type schema:DefinedTerm
104 N736e99e16cd04843aac1448e34975ac6 schema:name dimensions_id
105 schema:value pub.1083850728
106 rdf:type schema:PropertyValue
107 N7583635592674080b878a809f60f9771 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Lipids
109 rdf:type schema:DefinedTerm
110 N8b99ae3391a54d6aa59636b41a69c085 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Green Fluorescent Proteins
112 rdf:type schema:DefinedTerm
113 N8cd631bdf50e460d8efefc77f221ed40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Transfection
115 rdf:type schema:DefinedTerm
116 N9b1db45d640544e0a10be5e59e271615 rdf:first sg:person.010155724315.13
117 rdf:rest N9f0e8af6d6e945b2a385a1a39fdde7aa
118 N9f0e8af6d6e945b2a385a1a39fdde7aa rdf:first sg:person.011342402346.80
119 rdf:rest rdf:nil
120 Na1198bbd5ec04adfa5801bbcbd26256a schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Nb56136df3a384e358ba63624e7565240 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Calcium Phosphates
124 rdf:type schema:DefinedTerm
125 Nbe2205ce6b3746ab9b495cce67e3af84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Silencing
127 rdf:type schema:DefinedTerm
128 Nc6ed740843f549369fea5ce7b5f6eb39 schema:name doi
129 schema:value 10.1038/gt.2017.13
130 rdf:type schema:PropertyValue
131 Nca086755d965465ca35ef2e318579ed5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Humans
133 rdf:type schema:DefinedTerm
134 Nfa8ea6a96ee54ac2b52903c98f2aea82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Microscopy, Fluorescence
136 rdf:type schema:DefinedTerm
137 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
138 schema:name Biological Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
141 schema:name Genetics
142 rdf:type schema:DefinedTerm
143 sg:journal.1105638 schema:issn 0969-7128
144 1476-5462
145 schema:name Gene Therapy
146 schema:publisher Springer Nature
147 rdf:type schema:Periodical
148 sg:person.010155724315.13 schema:affiliation grid-institutes:grid.5718.b
149 schema:familyName Chernousova
150 schema:givenName S
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155724315.13
152 rdf:type schema:Person
153 sg:person.011342402346.80 schema:affiliation grid-institutes:grid.5718.b
154 schema:familyName Epple
155 schema:givenName M
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80
157 rdf:type schema:Person
158 sg:pub.10.1007/978-0-387-76713-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011085601
159 https://doi.org/10.1007/978-0-387-76713-0_4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s10853-009-4159-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042696783
162 https://doi.org/10.1007/s10853-009-4159-3
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11095-010-0364-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001765019
165 https://doi.org/10.1007/s11095-010-0364-7
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature07758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021098775
168 https://doi.org/10.1038/nature07758
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/srep25879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321778
171 https://doi.org/10.1038/srep25879
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/s12977-016-0258-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033996396
174 https://doi.org/10.1186/s12977-016-0258-9
175 rdf:type schema:CreativeWork
176 sg:pub.10.1208/s12248-010-9210-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006062010
177 https://doi.org/10.1208/s12248-010-9210-4
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.5718.b schema:alternateName Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
180 schema:name Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...