Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-09

AUTHORS

S Chernousova, M Epple

ABSTRACT

The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2–3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application. More... »

PAGES

282-289

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/gt.2017.13

DOI

http://dx.doi.org/10.1038/gt.2017.13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083850728

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28218744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcium Phosphates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Silencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Green Fluorescent Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HeLa Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfection", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernousova", 
        "givenName": "S", 
        "id": "sg:person.010155724315.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155724315.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Epple", 
        "givenName": "M", 
        "id": "sg:person.011342402346.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12977-016-0258-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033996396", 
          "https://doi.org/10.1186/s12977-016-0258-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-009-4159-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042696783", 
          "https://doi.org/10.1007/s10853-009-4159-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021098775", 
          "https://doi.org/10.1038/nature07758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-76713-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011085601", 
          "https://doi.org/10.1007/978-0-387-76713-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-010-0364-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001765019", 
          "https://doi.org/10.1007/s11095-010-0364-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-010-9210-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006062010", 
          "https://doi.org/10.1208/s12248-010-9210-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321778", 
          "https://doi.org/10.1038/srep25879"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-09", 
    "datePublishedReg": "2017-03-09", 
    "description": "The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5\u2009h in the case of nanoparticles and after 4\u2009h in the case of Lipofectamine. The corresponding times for gene silencing were 5\u2009h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2\u20133\u2009h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/gt.2017.13", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "calcium phosphate nanoparticles", 
      "phosphate nanoparticles", 
      "expression of EGFP", 
      "case of nanoparticles", 
      "liposomal transfection agent", 
      "transfection agents", 
      "nanoparticles", 
      "vivo applications", 
      "suitable vector", 
      "Lipofectamine", 
      "delivery system", 
      "green fluorescent protein", 
      "nucleic acids", 
      "HeLa cells", 
      "fluorescent protein", 
      "EGFP", 
      "live-cell imaging", 
      "efficiency", 
      "transfection", 
      "processing of DNA", 
      "DNA", 
      "applications", 
      "siRNA", 
      "imaging", 
      "cells", 
      "vector", 
      "cytotoxicity", 
      "processing", 
      "genes", 
      "acid", 
      "system", 
      "agents", 
      "RNA", 
      "time", 
      "protein", 
      "latter case", 
      "incubation", 
      "expression", 
      "comparison", 
      "division", 
      "corresponding time", 
      "cases", 
      "cell division", 
      "high dose", 
      "dose"
    ], 
    "name": "Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent", 
    "pagination": "282-289", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083850728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/gt.2017.13"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28218744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/gt.2017.13", 
      "https://app.dimensions.ai/details/publication/pub.1083850728"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_721.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/gt.2017.13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/gt.2017.13'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      87 URIs      72 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/gt.2017.13 schema:about N00c6095ecf9c4e5d9327ea769f9cd99f
2 N02e8489f92a24b7a8a15ab0dd7899110
3 N09c0af9bee3144678288bc270495d22a
4 N59041243a3664e5eb3b4602e4f8618e8
5 N5f0e80b050d748e0852b0cdcf11f08d6
6 N81aa8a434ae44657abd01f22050103ee
7 Nb1133291487b4ce3a436942fd1f444f1
8 Nd75dc659a1314292b41b5ea6ac4d8edf
9 Ne40de378234d4dc2ae2a23a47ceb1e3e
10 Nf6efe20604f2497ebfa9304a715d776e
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N06fc527b7b1441128c8c14b38e89ceda
14 schema:citation sg:pub.10.1007/978-0-387-76713-0_4
15 sg:pub.10.1007/s10853-009-4159-3
16 sg:pub.10.1007/s11095-010-0364-7
17 sg:pub.10.1038/nature07758
18 sg:pub.10.1038/srep25879
19 sg:pub.10.1186/s12977-016-0258-9
20 sg:pub.10.1208/s12248-010-9210-4
21 schema:datePublished 2017-03-09
22 schema:datePublishedReg 2017-03-09
23 schema:description The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2–3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N05f1b32646a34ee5a3914f529d280d57
27 N6c26b6f103da4a7780318340b54df0ee
28 sg:journal.1105638
29 schema:keywords DNA
30 EGFP
31 HeLa cells
32 Lipofectamine
33 RNA
34 acid
35 agents
36 applications
37 calcium phosphate nanoparticles
38 case of nanoparticles
39 cases
40 cell division
41 cells
42 comparison
43 corresponding time
44 cytotoxicity
45 delivery system
46 division
47 dose
48 efficiency
49 expression
50 expression of EGFP
51 fluorescent protein
52 genes
53 green fluorescent protein
54 high dose
55 imaging
56 incubation
57 latter case
58 liposomal transfection agent
59 live-cell imaging
60 nanoparticles
61 nucleic acids
62 phosphate nanoparticles
63 processing
64 processing of DNA
65 protein
66 siRNA
67 suitable vector
68 system
69 time
70 transfection
71 transfection agents
72 vector
73 vivo applications
74 schema:name Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent
75 schema:pagination 282-289
76 schema:productId N1f3d9758802a47dca150e98b6d05ab89
77 Nca0ed774de1744c8bed4156f93dd8619
78 Nf216de028bfe4bc493f42c1382e8b368
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083850728
80 https://doi.org/10.1038/gt.2017.13
81 schema:sdDatePublished 2022-11-24T21:01
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N57ef15c8cf0e4789a43ae7da95e4dfa6
84 schema:url https://doi.org/10.1038/gt.2017.13
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N00c6095ecf9c4e5d9327ea769f9cd99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Green Fluorescent Proteins
90 rdf:type schema:DefinedTerm
91 N02e8489f92a24b7a8a15ab0dd7899110 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Calcium Phosphates
93 rdf:type schema:DefinedTerm
94 N05f1b32646a34ee5a3914f529d280d57 schema:volumeNumber 24
95 rdf:type schema:PublicationVolume
96 N06fc527b7b1441128c8c14b38e89ceda rdf:first sg:person.010155724315.13
97 rdf:rest Ne5519eca78de43eda2f032d942ed27ba
98 N09c0af9bee3144678288bc270495d22a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Gene Silencing
100 rdf:type schema:DefinedTerm
101 N1f3d9758802a47dca150e98b6d05ab89 schema:name pubmed_id
102 schema:value 28218744
103 rdf:type schema:PropertyValue
104 N57ef15c8cf0e4789a43ae7da95e4dfa6 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N59041243a3664e5eb3b4602e4f8618e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Transfection
108 rdf:type schema:DefinedTerm
109 N5f0e80b050d748e0852b0cdcf11f08d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Mitosis
111 rdf:type schema:DefinedTerm
112 N6c26b6f103da4a7780318340b54df0ee schema:issueNumber 5
113 rdf:type schema:PublicationIssue
114 N81aa8a434ae44657abd01f22050103ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name HeLa Cells
116 rdf:type schema:DefinedTerm
117 Nb1133291487b4ce3a436942fd1f444f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Lipids
119 rdf:type schema:DefinedTerm
120 Nca0ed774de1744c8bed4156f93dd8619 schema:name dimensions_id
121 schema:value pub.1083850728
122 rdf:type schema:PropertyValue
123 Nd75dc659a1314292b41b5ea6ac4d8edf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Ne40de378234d4dc2ae2a23a47ceb1e3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Nanoparticles
128 rdf:type schema:DefinedTerm
129 Ne5519eca78de43eda2f032d942ed27ba rdf:first sg:person.011342402346.80
130 rdf:rest rdf:nil
131 Nf216de028bfe4bc493f42c1382e8b368 schema:name doi
132 schema:value 10.1038/gt.2017.13
133 rdf:type schema:PropertyValue
134 Nf6efe20604f2497ebfa9304a715d776e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Microscopy, Fluorescence
136 rdf:type schema:DefinedTerm
137 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
138 schema:name Biological Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
141 schema:name Genetics
142 rdf:type schema:DefinedTerm
143 sg:journal.1105638 schema:issn 0969-7128
144 1476-5462
145 schema:name Gene Therapy
146 schema:publisher Springer Nature
147 rdf:type schema:Periodical
148 sg:person.010155724315.13 schema:affiliation grid-institutes:grid.5718.b
149 schema:familyName Chernousova
150 schema:givenName S
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155724315.13
152 rdf:type schema:Person
153 sg:person.011342402346.80 schema:affiliation grid-institutes:grid.5718.b
154 schema:familyName Epple
155 schema:givenName M
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80
157 rdf:type schema:Person
158 sg:pub.10.1007/978-0-387-76713-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011085601
159 https://doi.org/10.1007/978-0-387-76713-0_4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s10853-009-4159-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042696783
162 https://doi.org/10.1007/s10853-009-4159-3
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11095-010-0364-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001765019
165 https://doi.org/10.1007/s11095-010-0364-7
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature07758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021098775
168 https://doi.org/10.1038/nature07758
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/srep25879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321778
171 https://doi.org/10.1038/srep25879
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/s12977-016-0258-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033996396
174 https://doi.org/10.1186/s12977-016-0258-9
175 rdf:type schema:CreativeWork
176 sg:pub.10.1208/s12248-010-9210-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006062010
177 https://doi.org/10.1208/s12248-010-9210-4
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.5718.b schema:alternateName Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
180 schema:name Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...