High-throughput screening identifies compounds that enhance lentiviral transduction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12

AUTHORS

J M Johnston, G Denning, R Moot, D Whitehead, J Shields, J M Le Doux, C B Doering, H T Spencer

ABSTRACT

A difficulty in the field of gene therapy is the need to increase the susceptibility of hematopoietic stem cells (HSCs) to ex vivo genetic manipulation. To overcome this obstacle a high-throughput screen was performed to identify compounds that could enhance the transduction of target cells by lentiviral vectors. Of the 1280 compounds initially screened using the myeloid-erythroid-leukemic K562 cell line, 30 were identified as possible enhancers of viral transduction. Among the positive hits were known enhancers of transduction (camptothecin, etoposide and taxol), as well as the previously unidentified phorbol 12-myristate 13-acetate (PMA). The percentage of green fluorescent protein (GFP)-positive-expressing K562 cells was increased more than fourfold in the presence of PMA. In addition, the transduction of K562 cells with a lentiviral vector encoding fVIII was four times greater in the presence of PMA as determined by an increase in the levels of provirus in genetically modified cells. PMA did not enhance viral transduction of all cell types (for example, sca-1(+) mouse hematopoietic cells) but did enhance viral transduction of human bone marrow-derived CD34(+) cells. Notably, the percentage of GFP-positive CD34(+) cells was increased from 7% in the absence of PMA to greater than 22% in the presence of 1 nM PMA. PMA did not affect colony formation of CD34(+) cells or the expression of the hematopoietic markers CD34 and CD45. These data demonstrate that high-throughput screening can be used to identify compounds that increase the transduction efficiency of lentiviral vectors, identifying PMA as a potential enhancer of lentiviral HSC transduction. More... »

PAGES

gt201480

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/gt.2014.80

DOI

http://dx.doi.org/10.1038/gt.2014.80

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031567873

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25231175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antigens, CD34", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Camptothecin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colforsin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Green Fluorescent Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HEK293 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hematopoietic Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Screening Assays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lentivirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "NIH 3T3 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sirolimus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tetradecanoylphorbol Acetate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transduction, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "U937 Cells", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA", 
            "Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnston", 
        "givenName": "J M", 
        "id": "sg:person.01131574524.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131574524.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Expression Therapeutics (United States)", 
          "id": "https://www.grid.ac/institutes/grid.421231.7", 
          "name": [
            "Expression Therapeutics, LLC, Tucker, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denning", 
        "givenName": "G", 
        "id": "sg:person.01075310234.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075310234.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA", 
            "Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moot", 
        "givenName": "R", 
        "id": "sg:person.01155741333.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155741333.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whitehead", 
        "givenName": "D", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shields", 
        "givenName": "J", 
        "id": "sg:person.01334574625.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334574625.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Wallace H. Coulter Department of Biomedical Engineering", 
          "id": "https://www.grid.ac/institutes/grid.470935.c", 
          "name": [
            "Wallace H Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Doux", 
        "givenName": "J M", 
        "id": "sg:person.0604327530.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604327530.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "C B", 
        "id": "sg:person.01271105242.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271105242.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spencer", 
        "givenName": "H T", 
        "id": "sg:person.01047406067.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047406067.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0006461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005445117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.79.9.5695-5704.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005510836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m506224200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006301234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m506224200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006301234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2005-12-4961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008739904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.00034.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015973153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgm.1052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021357571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m206959200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021954523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/mt.2009.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024098007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2005-10-4047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025668872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3303080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025984488", 
          "https://doi.org/10.1038/sj.gt.3303080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.270.24.14679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026676233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gt.2012.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027062770", 
          "https://doi.org/10.1038/gt.2012.76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.mt.6300146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032524759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2744(200005)28:1<5::aid-mc2>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036354127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0595-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037829529", 
          "https://doi.org/10.1038/ng0595-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0074-7696(03)01004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038175504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2013-12-546218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040190346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/mt.2010.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041001093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/22437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041004997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041218881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biologicals.2009.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042002115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chembiol.2010.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043150631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1003548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044099659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2011.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047373753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049299780", 
          "https://doi.org/10.1038/nature09328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.13.4868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051428882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2003-07-2363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051756376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/104303401753153947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059202306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/15258160260194848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059213321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/aid.2006.22.854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059225381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dna.2006.0542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059252031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3000931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062686633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3000931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062686633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.13.13.1658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074528506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075104037", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081672474", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082678053", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082746044", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "A difficulty in the field of gene therapy is the need to increase the susceptibility of hematopoietic stem cells (HSCs) to ex vivo genetic manipulation. To overcome this obstacle a high-throughput screen was performed to identify compounds that could enhance the transduction of target cells by lentiviral vectors. Of the 1280 compounds initially screened using the myeloid-erythroid-leukemic K562 cell line, 30 were identified as possible enhancers of viral transduction. Among the positive hits were known enhancers of transduction (camptothecin, etoposide and taxol), as well as the previously unidentified phorbol 12-myristate 13-acetate (PMA). The percentage of green fluorescent protein (GFP)-positive-expressing K562 cells was increased more than fourfold in the presence of PMA. In addition, the transduction of K562 cells with a lentiviral vector encoding fVIII was four times greater in the presence of PMA as determined by an increase in the levels of provirus in genetically modified cells. PMA did not enhance viral transduction of all cell types (for example, sca-1(+) mouse hematopoietic cells) but did enhance viral transduction of human bone marrow-derived CD34(+) cells. Notably, the percentage of GFP-positive CD34(+) cells was increased from 7% in the absence of PMA to greater than 22% in the presence of 1\u2009nM PMA. PMA did not affect colony formation of CD34(+) cells or the expression of the hematopoietic markers CD34 and CD45. These data demonstrate that high-throughput screening can be used to identify compounds that increase the transduction efficiency of lentiviral vectors, identifying PMA as a potential enhancer of lentiviral HSC transduction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/gt.2014.80", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "High-throughput screening identifies compounds that enhance lentiviral transduction", 
    "pagination": "gt201480", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9661e5736cb641ba07aac3591983ec799f08460b48312fd83f03da578f4564cb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25231175"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9421525"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/gt.2014.80"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031567873"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/gt.2014.80", 
      "https://app.dimensions.ai/details/publication/pub.1031567873"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117097_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/gt201480"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/gt.2014.80'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/gt.2014.80'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/gt.2014.80'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/gt.2014.80'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      85 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/gt.2014.80 schema:about N0ffd910a0b7b452aab4bf1db8dfeb4f3
2 N150647c7b79144bfb49e6aed75d1f3c7
3 N1f18a905dbac461ab79dea7a9b366b20
4 N23ff3e105ced45fba1fc5dce3867c257
5 N51a0b5645cfd4bde8e07fe9f03d6a810
6 N56068d615246448a88b031d3f25048ae
7 N69758984074949c28cd99ed6a3820aad
8 N75f96d1463304bf093d5d142daadf8fa
9 Na9ae84389402470e981b17db28c298c3
10 Nc36bbcff35d64a6a884c525fb97d09ec
11 Nc81458dca40a4ecca18a1d56a64b2954
12 Nca1d1b2703be44d9bdb98d3f25de924b
13 Ne1e439377b4e4b26a45e73f81e72014d
14 Ne3bbef8acd1346c0b05cee859e1c339c
15 Nead6049b9abd42178f6517841e028a82
16 Ned86f59c3ea44571ac5ff69ad72392ae
17 Nee8949d36baa468f8333f5062a6c0933
18 Nf76722da095d42648bfc0ffa8ee42834
19 Nfa0216bb7e594ddea7287560458e99c4
20 anzsrc-for:06
21 anzsrc-for:0601
22 schema:author Nef9a9891b90e4e9eb167eb6e13466b78
23 schema:citation sg:pub.10.1038/gt.2012.76
24 sg:pub.10.1038/nature09328
25 sg:pub.10.1038/ng0595-119
26 sg:pub.10.1038/sj.gt.3303080
27 https://app.dimensions.ai/details/publication/pub.1075104037
28 https://app.dimensions.ai/details/publication/pub.1081672474
29 https://app.dimensions.ai/details/publication/pub.1082678053
30 https://app.dimensions.ai/details/publication/pub.1082746044
31 https://doi.org/10.1002/(sici)1098-2744(200005)28:1<5::aid-mc2>3.0.co;2-g
32 https://doi.org/10.1002/jgm.1052
33 https://doi.org/10.1016/j.biologicals.2009.01.008
34 https://doi.org/10.1016/j.chembiol.2010.04.012
35 https://doi.org/10.1016/j.jbiotec.2011.09.001
36 https://doi.org/10.1016/s0074-7696(03)01004-0
37 https://doi.org/10.1038/mt.2009.134
38 https://doi.org/10.1038/mt.2010.239
39 https://doi.org/10.1038/sj.mt.6300146
40 https://doi.org/10.1056/nejmoa1003548
41 https://doi.org/10.1073/pnas.86.13.4868
42 https://doi.org/10.1074/jbc.270.24.14679
43 https://doi.org/10.1074/jbc.m206959200
44 https://doi.org/10.1074/jbc.m506224200
45 https://doi.org/10.1089/104303401753153947
46 https://doi.org/10.1089/15258160260194848
47 https://doi.org/10.1089/aid.2006.22.854
48 https://doi.org/10.1089/dna.2006.0542
49 https://doi.org/10.1096/fasebj.13.13.1658
50 https://doi.org/10.1126/science.1171242
51 https://doi.org/10.1126/scitranslmed.3000931
52 https://doi.org/10.1128/jvi.79.9.5695-5704.2005
53 https://doi.org/10.1152/physrev.00034.2007
54 https://doi.org/10.1182/blood-2003-07-2363
55 https://doi.org/10.1182/blood-2005-10-4047
56 https://doi.org/10.1182/blood-2005-12-4961
57 https://doi.org/10.1182/blood-2013-12-546218
58 https://doi.org/10.1371/journal.pone.0006461
59 https://doi.org/10.5772/22437
60 schema:datePublished 2014-12
61 schema:datePublishedReg 2014-12-01
62 schema:description A difficulty in the field of gene therapy is the need to increase the susceptibility of hematopoietic stem cells (HSCs) to ex vivo genetic manipulation. To overcome this obstacle a high-throughput screen was performed to identify compounds that could enhance the transduction of target cells by lentiviral vectors. Of the 1280 compounds initially screened using the myeloid-erythroid-leukemic K562 cell line, 30 were identified as possible enhancers of viral transduction. Among the positive hits were known enhancers of transduction (camptothecin, etoposide and taxol), as well as the previously unidentified phorbol 12-myristate 13-acetate (PMA). The percentage of green fluorescent protein (GFP)-positive-expressing K562 cells was increased more than fourfold in the presence of PMA. In addition, the transduction of K562 cells with a lentiviral vector encoding fVIII was four times greater in the presence of PMA as determined by an increase in the levels of provirus in genetically modified cells. PMA did not enhance viral transduction of all cell types (for example, sca-1(+) mouse hematopoietic cells) but did enhance viral transduction of human bone marrow-derived CD34(+) cells. Notably, the percentage of GFP-positive CD34(+) cells was increased from 7% in the absence of PMA to greater than 22% in the presence of 1 nM PMA. PMA did not affect colony formation of CD34(+) cells or the expression of the hematopoietic markers CD34 and CD45. These data demonstrate that high-throughput screening can be used to identify compounds that increase the transduction efficiency of lentiviral vectors, identifying PMA as a potential enhancer of lentiviral HSC transduction.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree false
66 schema:isPartOf N0dd8abfb4ac64b2bb8f1c79e779e8c52
67 N0ed41d6b3e34474780cefe281a0c3a89
68 sg:journal.1105638
69 schema:name High-throughput screening identifies compounds that enhance lentiviral transduction
70 schema:pagination gt201480
71 schema:productId N19f293adacd541ba8fcf0a2e15403b6e
72 N3474b1b83f21448d91dd8d452a307257
73 N5053f4f8287147b6bcea040927feee5e
74 Nc379758b6e9647e2b65bef10e0c774fb
75 Neb46d8bea3374f15af0673eae369ca16
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031567873
77 https://doi.org/10.1038/gt.2014.80
78 schema:sdDatePublished 2019-04-11T14:17
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N0acc0e185ad5476cb34d45a141dfe6ff
81 schema:url http://www.nature.com/articles/gt201480
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N0acc0e185ad5476cb34d45a141dfe6ff schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N0dd8abfb4ac64b2bb8f1c79e779e8c52 schema:volumeNumber 21
88 rdf:type schema:PublicationVolume
89 N0ed41d6b3e34474780cefe281a0c3a89 schema:issueNumber 12
90 rdf:type schema:PublicationIssue
91 N0ffd910a0b7b452aab4bf1db8dfeb4f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Colforsin
93 rdf:type schema:DefinedTerm
94 N150647c7b79144bfb49e6aed75d1f3c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Mice
96 rdf:type schema:DefinedTerm
97 N19f293adacd541ba8fcf0a2e15403b6e schema:name doi
98 schema:value 10.1038/gt.2014.80
99 rdf:type schema:PropertyValue
100 N1f18a905dbac461ab79dea7a9b366b20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Animals
102 rdf:type schema:DefinedTerm
103 N23ff3e105ced45fba1fc5dce3867c257 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Camptothecin
105 rdf:type schema:DefinedTerm
106 N3474b1b83f21448d91dd8d452a307257 schema:name pubmed_id
107 schema:value 25231175
108 rdf:type schema:PropertyValue
109 N3e60e821e4334236b6b01e281c89f564 rdf:first sg:person.0604327530.64
110 rdf:rest Nd8f381d009c84ee69fed3319b8507610
111 N49e5ebf63b78465286418a342a893096 rdf:first sg:person.01075310234.54
112 rdf:rest Nac62bf3094a84436878f196bb3b2c7ba
113 N4b91f2be08fb40e5b1e05ebde49456cb rdf:first Nef36742fdb7f420591b09facfe9c4b2d
114 rdf:rest Nd0e73dba213e4b13b8710f55adb62d37
115 N5053f4f8287147b6bcea040927feee5e schema:name nlm_unique_id
116 schema:value 9421525
117 rdf:type schema:PropertyValue
118 N51a0b5645cfd4bde8e07fe9f03d6a810 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name U937 Cells
120 rdf:type schema:DefinedTerm
121 N56068d615246448a88b031d3f25048ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Humans
123 rdf:type schema:DefinedTerm
124 N69758984074949c28cd99ed6a3820aad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Green Fluorescent Proteins
126 rdf:type schema:DefinedTerm
127 N75f96d1463304bf093d5d142daadf8fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Lentivirus
129 rdf:type schema:DefinedTerm
130 Na9ae84389402470e981b17db28c298c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Sirolimus
132 rdf:type schema:DefinedTerm
133 Nac62bf3094a84436878f196bb3b2c7ba rdf:first sg:person.01155741333.30
134 rdf:rest N4b91f2be08fb40e5b1e05ebde49456cb
135 Nc36bbcff35d64a6a884c525fb97d09ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Genetic Vectors
137 rdf:type schema:DefinedTerm
138 Nc379758b6e9647e2b65bef10e0c774fb schema:name readcube_id
139 schema:value 9661e5736cb641ba07aac3591983ec799f08460b48312fd83f03da578f4564cb
140 rdf:type schema:PropertyValue
141 Nc81458dca40a4ecca18a1d56a64b2954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Antigens, CD34
143 rdf:type schema:DefinedTerm
144 Nca1d1b2703be44d9bdb98d3f25de924b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Genetic Therapy
146 rdf:type schema:DefinedTerm
147 Nce7b827823df4815a4fbbea56fb1ac44 rdf:first sg:person.01047406067.17
148 rdf:rest rdf:nil
149 Nd0e73dba213e4b13b8710f55adb62d37 rdf:first sg:person.01334574625.78
150 rdf:rest N3e60e821e4334236b6b01e281c89f564
151 Nd8f381d009c84ee69fed3319b8507610 rdf:first sg:person.01271105242.84
152 rdf:rest Nce7b827823df4815a4fbbea56fb1ac44
153 Ne1e439377b4e4b26a45e73f81e72014d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name HEK293 Cells
155 rdf:type schema:DefinedTerm
156 Ne3bbef8acd1346c0b05cee859e1c339c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Hematopoietic Stem Cells
158 rdf:type schema:DefinedTerm
159 Nead6049b9abd42178f6517841e028a82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name NIH 3T3 Cells
161 rdf:type schema:DefinedTerm
162 Neb46d8bea3374f15af0673eae369ca16 schema:name dimensions_id
163 schema:value pub.1031567873
164 rdf:type schema:PropertyValue
165 Ned86f59c3ea44571ac5ff69ad72392ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Cell Line, Tumor
167 rdf:type schema:DefinedTerm
168 Nee8949d36baa468f8333f5062a6c0933 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name High-Throughput Screening Assays
170 rdf:type schema:DefinedTerm
171 Nef36742fdb7f420591b09facfe9c4b2d schema:affiliation https://www.grid.ac/institutes/grid.189967.8
172 schema:familyName Whitehead
173 schema:givenName D
174 rdf:type schema:Person
175 Nef9a9891b90e4e9eb167eb6e13466b78 rdf:first sg:person.01131574524.93
176 rdf:rest N49e5ebf63b78465286418a342a893096
177 Nf76722da095d42648bfc0ffa8ee42834 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Transduction, Genetic
179 rdf:type schema:DefinedTerm
180 Nfa0216bb7e594ddea7287560458e99c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Tetradecanoylphorbol Acetate
182 rdf:type schema:DefinedTerm
183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biological Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
187 schema:name Biochemistry and Cell Biology
188 rdf:type schema:DefinedTerm
189 sg:journal.1105638 schema:issn 0969-7128
190 1476-5462
191 schema:name Gene Therapy
192 rdf:type schema:Periodical
193 sg:person.01047406067.17 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
194 schema:familyName Spencer
195 schema:givenName H T
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047406067.17
197 rdf:type schema:Person
198 sg:person.01075310234.54 schema:affiliation https://www.grid.ac/institutes/grid.421231.7
199 schema:familyName Denning
200 schema:givenName G
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075310234.54
202 rdf:type schema:Person
203 sg:person.01131574524.93 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
204 schema:familyName Johnston
205 schema:givenName J M
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131574524.93
207 rdf:type schema:Person
208 sg:person.01155741333.30 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
209 schema:familyName Moot
210 schema:givenName R
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155741333.30
212 rdf:type schema:Person
213 sg:person.01271105242.84 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
214 schema:familyName Doering
215 schema:givenName C B
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271105242.84
217 rdf:type schema:Person
218 sg:person.01334574625.78 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
219 schema:familyName Shields
220 schema:givenName J
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334574625.78
222 rdf:type schema:Person
223 sg:person.0604327530.64 schema:affiliation https://www.grid.ac/institutes/grid.470935.c
224 schema:familyName Le Doux
225 schema:givenName J M
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604327530.64
227 rdf:type schema:Person
228 sg:pub.10.1038/gt.2012.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027062770
229 https://doi.org/10.1038/gt.2012.76
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nature09328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049299780
232 https://doi.org/10.1038/nature09328
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/ng0595-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037829529
235 https://doi.org/10.1038/ng0595-119
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/sj.gt.3303080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025984488
238 https://doi.org/10.1038/sj.gt.3303080
239 rdf:type schema:CreativeWork
240 https://app.dimensions.ai/details/publication/pub.1075104037 schema:CreativeWork
241 https://app.dimensions.ai/details/publication/pub.1081672474 schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1082678053 schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1082746044 schema:CreativeWork
244 https://doi.org/10.1002/(sici)1098-2744(200005)28:1<5::aid-mc2>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1036354127
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1002/jgm.1052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021357571
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.biologicals.2009.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042002115
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.chembiol.2010.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043150631
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.jbiotec.2011.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047373753
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/s0074-7696(03)01004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038175504
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1038/mt.2009.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024098007
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1038/mt.2010.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041001093
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1038/sj.mt.6300146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032524759
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1056/nejmoa1003548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099659
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1073/pnas.86.13.4868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051428882
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1074/jbc.270.24.14679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026676233
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1074/jbc.m206959200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021954523
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1074/jbc.m506224200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006301234
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1089/104303401753153947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059202306
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1089/15258160260194848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059213321
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1089/aid.2006.22.854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059225381
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1089/dna.2006.0542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059252031
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1096/fasebj.13.13.1658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074528506
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1126/science.1171242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041218881
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1126/scitranslmed.3000931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062686633
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1128/jvi.79.9.5695-5704.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005510836
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1152/physrev.00034.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015973153
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1182/blood-2003-07-2363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051756376
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1182/blood-2005-10-4047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025668872
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1182/blood-2005-12-4961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008739904
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1182/blood-2013-12-546218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040190346
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pone.0006461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005445117
299 rdf:type schema:CreativeWork
300 https://doi.org/10.5772/22437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041004997
301 rdf:type schema:CreativeWork
302 https://www.grid.ac/institutes/grid.189967.8 schema:alternateName Emory University
303 schema:name Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
304 Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
305 rdf:type schema:Organization
306 https://www.grid.ac/institutes/grid.421231.7 schema:alternateName Expression Therapeutics (United States)
307 schema:name Expression Therapeutics, LLC, Tucker, GA, USA
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.470935.c schema:alternateName The Wallace H. Coulter Department of Biomedical Engineering
310 schema:name Wallace H Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...