Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Maja Tarailo-Graovac, Jing Yun Alice Zhu, Allison Matthews, Clara D M van Karnebeek, Wyeth W Wasserman

ABSTRACT

PurposeWe analyzed the Exome Aggregation Consortium (ExAC) data set for the presence of individuals with pathogenic genotypes implicated in Mendelian pediatric disorders.MethodsClinVar likely/pathogenic variants supported by at least one peer-reviewed publication were assessed within the ExAC database to identify individuals expected to exhibit a childhood disorder based on concordance with disease inheritance modes: heterozygous (for dominant), homozygous (for recessive) or hemizygous (for X-linked recessive conditions). Variants from 924 genes reported to cause Mendelian childhood disorders were considered.ResultsWe identified ExAC individuals with candidate pathogenic genotypes for 190 previously published likely/pathogenic variants in 128 genes. After curation, we determined that 113 of the variants have sufficient support for pathogenicity and identified 1,717 ExAC individuals (~2.8% of the ExAC population) with corresponding possible/disease-associated genotypes implicated in rare Mendelian disorders, ranging from mild (e.g., due to SCN2A deficiency) to severe pediatric conditions (e.g., due to FGFR1 deficiency).ConclusionLarge-scale sequencing projects and data aggregation consortia provide unprecedented opportunities to determine the prevalence of pathogenic genotypes in unselected populations. This knowledge is crucial for understanding the penetrance of disease-associated variants, phenotypic variability, somatic mosaicism, as well as published literature curation for variant classification procedures and predicted clinical outcomes. More... »

PAGES

1300

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/gim.2017.50

DOI

http://dx.doi.org/10.1038/gim.2017.50

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085134019

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28471432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Diseases, Inborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Outcome Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Penetrance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada", 
            "Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada", 
            "BC Children\u2019s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada", 
            "Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarailo-Graovac", 
        "givenName": "Maja", 
        "id": "sg:person.01016721737.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016721737.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jing Yun Alice", 
        "id": "sg:person.0656241157.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656241157.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada", 
            "Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada", 
            "BC Children\u2019s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matthews", 
        "givenName": "Allison", 
        "id": "sg:person.016321334433.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016321334433.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academic Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5650.6", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada", 
            "BC Children\u2019s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada", 
            "Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada", 
            "Department of Pediatrics, Emma Children\u2019s Hospital, Academic Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Karnebeek", 
        "givenName": "Clara D M", 
        "id": "sg:person.01037477313.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037477313.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada", 
            "Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada", 
            "BC Children\u2019s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wasserman", 
        "givenName": "Wyeth W", 
        "id": "sg:person.01164162122.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg3555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001268995", 
          "https://doi.org/10.1038/nrg3555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.31982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003219682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.20131141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004968521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2016.1519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006694255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007708889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2012.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008037521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2012.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008579771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012926250", 
          "https://doi.org/10.1038/nm.3733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2015.180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016113453", 
          "https://doi.org/10.1038/gim.2015.180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2010.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016114680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019307928", 
          "https://doi.org/10.1038/nbt.1754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1515792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020152170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.20140520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020196812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2015.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022229472", 
          "https://doi.org/10.1038/gim.2015.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022281897", 
          "https://doi.org/10.1038/nature19057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmsa1507092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023338609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1409405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023672394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajh.24063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025561781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.aag2367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025923770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.aag2367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025923770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030318872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2009-01-198416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031376291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2010.076836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031507439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3001756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031928297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032305204", 
          "https://doi.org/10.1038/nbt.3514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034754276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2014.14601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035740594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1408617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037067588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2016.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041583016", 
          "https://doi.org/10.1038/gim.2016.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.35265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041835743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2013.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041976887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043037714", 
          "https://doi.org/10.1038/ng.868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cge.12847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044267859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.37476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047518309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:boli.0000042983.60840.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050980188", 
          "https://doi.org/10.1023/b:boli.0000042983.60840.f3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/323610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058624212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.23203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083859632"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "PurposeWe analyzed the Exome Aggregation Consortium (ExAC) data set for the presence of individuals with pathogenic genotypes implicated in Mendelian pediatric disorders.MethodsClinVar likely/pathogenic variants supported by at least one peer-reviewed publication were assessed within the ExAC database to identify individuals expected to exhibit a childhood disorder based on concordance with disease inheritance modes: heterozygous (for dominant), homozygous (for recessive) or hemizygous (for X-linked recessive conditions). Variants from 924 genes reported to cause Mendelian childhood disorders were considered.ResultsWe identified ExAC individuals with candidate pathogenic genotypes for 190 previously published likely/pathogenic variants in 128 genes. After curation, we determined that 113 of the variants have sufficient support for pathogenicity and identified 1,717 ExAC individuals (~2.8% of the ExAC population) with corresponding possible/disease-associated genotypes implicated in rare Mendelian disorders, ranging from mild (e.g., due to SCN2A deficiency) to severe pediatric conditions (e.g., due to FGFR1 deficiency).ConclusionLarge-scale sequencing projects and data aggregation consortia provide unprecedented opportunities to determine the prevalence of pathogenic genotypes in unselected populations. This knowledge is crucial for understanding the penetrance of disease-associated variants, phenotypic variability, somatic mosaicism, as well as published literature curation for variant classification procedures and predicted clinical outcomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/gim.2017.50", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1119411", 
        "issn": [
          "1098-3600", 
          "1530-0366"
        ], 
        "name": "Genetics in Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders", 
    "pagination": "1300", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bed4e3e3ac85eee85879e2952876e612b4ff1c898822b837d15c1f13ef03c0a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28471432"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815831"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/gim.2017.50"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085134019"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/gim.2017.50", 
      "https://app.dimensions.ai/details/publication/pub.1085134019"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000552.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/gim201750"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/gim.2017.50'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/gim.2017.50'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/gim.2017.50'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/gim.2017.50'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      21 PREDICATES      80 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/gim.2017.50 schema:about N1aa90992f2404846b0a82af2465b62ad
2 N26f0be4a99094190b661bf8bc0df1b63
3 N27afebb8cfe94859814cbdece62d6d1a
4 N5164143200c84b32a6a225b0f5c89654
5 N7440ad695a164d1eb9cc538ad68e4e25
6 N869cb467729542cdab301e56f8e460f4
7 N98ecd25135c54f98b610612d603d6422
8 N9932c224551d4d548c709f050784f636
9 Ne16060fa5d014c03ab4fe8b1867f79fe
10 Ne2ade8a050be476292100cdeed058e1c
11 Ne3cf405cea304269a6c8d631c560427a
12 Ned630ee39ef041c0ba923d7243afeaa2
13 Nf262ce6fb9434459b057c5471d94e737
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author Na26be7f3d1474acb82b4eb8a056fc164
17 schema:citation sg:pub.10.1023/b:boli.0000042983.60840.f3
18 sg:pub.10.1038/gim.2015.180
19 sg:pub.10.1038/gim.2015.30
20 sg:pub.10.1038/gim.2016.88
21 sg:pub.10.1038/nature19057
22 sg:pub.10.1038/nbt.1754
23 sg:pub.10.1038/nbt.3514
24 sg:pub.10.1038/ng.868
25 sg:pub.10.1038/nm.3733
26 sg:pub.10.1038/nrg3555
27 https://doi.org/10.1001/jama.2014.14601
28 https://doi.org/10.1001/jama.2016.1519
29 https://doi.org/10.1002/ajh.24063
30 https://doi.org/10.1002/ajmg.a.31982
31 https://doi.org/10.1002/ajmg.a.35265
32 https://doi.org/10.1002/ajmg.a.37476
33 https://doi.org/10.1002/humu.22918
34 https://doi.org/10.1002/humu.23203
35 https://doi.org/10.1016/j.ajhg.2010.06.015
36 https://doi.org/10.1016/j.ajhg.2012.10.013
37 https://doi.org/10.1016/j.ajhg.2012.10.015
38 https://doi.org/10.1016/j.ajhg.2013.06.013
39 https://doi.org/10.1056/nejmoa1408617
40 https://doi.org/10.1056/nejmoa1409405
41 https://doi.org/10.1056/nejmoa1515792
42 https://doi.org/10.1056/nejmsa1507092
43 https://doi.org/10.1084/jem.20131141
44 https://doi.org/10.1084/jem.20140520
45 https://doi.org/10.1086/323610
46 https://doi.org/10.1093/bioinformatics/btp352
47 https://doi.org/10.1093/bioinformatics/btr330
48 https://doi.org/10.1093/bioinformatics/btu168
49 https://doi.org/10.1093/nar/gkv1222
50 https://doi.org/10.1111/cge.12847
51 https://doi.org/10.1126/scitranslmed.3001756
52 https://doi.org/10.1126/scitranslmed.aag2367
53 https://doi.org/10.1136/jmg.2010.076836
54 https://doi.org/10.1182/blood-2009-01-198416
55 schema:datePublished 2017-12
56 schema:datePublishedReg 2017-12-01
57 schema:description PurposeWe analyzed the Exome Aggregation Consortium (ExAC) data set for the presence of individuals with pathogenic genotypes implicated in Mendelian pediatric disorders.MethodsClinVar likely/pathogenic variants supported by at least one peer-reviewed publication were assessed within the ExAC database to identify individuals expected to exhibit a childhood disorder based on concordance with disease inheritance modes: heterozygous (for dominant), homozygous (for recessive) or hemizygous (for X-linked recessive conditions). Variants from 924 genes reported to cause Mendelian childhood disorders were considered.ResultsWe identified ExAC individuals with candidate pathogenic genotypes for 190 previously published likely/pathogenic variants in 128 genes. After curation, we determined that 113 of the variants have sufficient support for pathogenicity and identified 1,717 ExAC individuals (~2.8% of the ExAC population) with corresponding possible/disease-associated genotypes implicated in rare Mendelian disorders, ranging from mild (e.g., due to SCN2A deficiency) to severe pediatric conditions (e.g., due to FGFR1 deficiency).ConclusionLarge-scale sequencing projects and data aggregation consortia provide unprecedented opportunities to determine the prevalence of pathogenic genotypes in unselected populations. This knowledge is crucial for understanding the penetrance of disease-associated variants, phenotypic variability, somatic mosaicism, as well as published literature curation for variant classification procedures and predicted clinical outcomes.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N57db906c525947c68cfa539b60196ee4
62 Neb15d804f6294ce2adfa73c77f9cdf1a
63 sg:journal.1119411
64 schema:name Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders
65 schema:pagination 1300
66 schema:productId N1b11a9b44b0a4e38a84dc6ad6a5486ee
67 N3d8d64ff586b435e9f31894e5d4c03ee
68 N5ee7d4695e47421eb352e07a35cca5f1
69 N767a4515b52c481584cb019b9fc1d1e3
70 Na6181fa217854aaf8001b6e8562aa1a6
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085134019
72 https://doi.org/10.1038/gim.2017.50
73 schema:sdDatePublished 2019-04-10T21:44
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N7ec53b6e3495493d8113f35da3f16a22
76 schema:url https://www.nature.com/articles/gim201750
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N1aa90992f2404846b0a82af2465b62ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Penetrance
82 rdf:type schema:DefinedTerm
83 N1b11a9b44b0a4e38a84dc6ad6a5486ee schema:name dimensions_id
84 schema:value pub.1085134019
85 rdf:type schema:PropertyValue
86 N26f0be4a99094190b661bf8bc0df1b63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Genetic Predisposition to Disease
88 rdf:type schema:DefinedTerm
89 N27afebb8cfe94859814cbdece62d6d1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Severity of Illness Index
91 rdf:type schema:DefinedTerm
92 N31dcf9725e8a42e2ad0c9fa15869c250 rdf:first sg:person.01037477313.40
93 rdf:rest N9613794f3e3f4b79b1dfe67054c3fe2d
94 N3d8d64ff586b435e9f31894e5d4c03ee schema:name doi
95 schema:value 10.1038/gim.2017.50
96 rdf:type schema:PropertyValue
97 N5164143200c84b32a6a225b0f5c89654 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Exome
99 rdf:type schema:DefinedTerm
100 N57db906c525947c68cfa539b60196ee4 schema:issueNumber 12
101 rdf:type schema:PublicationIssue
102 N5ddfc5ebc5274d7f8fef75a1bd83f582 rdf:first sg:person.016321334433.35
103 rdf:rest N31dcf9725e8a42e2ad0c9fa15869c250
104 N5ee7d4695e47421eb352e07a35cca5f1 schema:name pubmed_id
105 schema:value 28471432
106 rdf:type schema:PropertyValue
107 N7440ad695a164d1eb9cc538ad68e4e25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Databases, Genetic
109 rdf:type schema:DefinedTerm
110 N74bd79a78679447284d25d0018f7b7a1 rdf:first sg:person.0656241157.11
111 rdf:rest N5ddfc5ebc5274d7f8fef75a1bd83f582
112 N767a4515b52c481584cb019b9fc1d1e3 schema:name readcube_id
113 schema:value 8bed4e3e3ac85eee85879e2952876e612b4ff1c898822b837d15c1f13ef03c0a
114 rdf:type schema:PropertyValue
115 N7ec53b6e3495493d8113f35da3f16a22 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N869cb467729542cdab301e56f8e460f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Genetic Diseases, Inborn
119 rdf:type schema:DefinedTerm
120 N9613794f3e3f4b79b1dfe67054c3fe2d rdf:first sg:person.01164162122.26
121 rdf:rest rdf:nil
122 N98ecd25135c54f98b610612d603d6422 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Gene Frequency
124 rdf:type schema:DefinedTerm
125 N9932c224551d4d548c709f050784f636 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Child
127 rdf:type schema:DefinedTerm
128 Na26be7f3d1474acb82b4eb8a056fc164 rdf:first sg:person.01016721737.77
129 rdf:rest N74bd79a78679447284d25d0018f7b7a1
130 Na6181fa217854aaf8001b6e8562aa1a6 schema:name nlm_unique_id
131 schema:value 9815831
132 rdf:type schema:PropertyValue
133 Ne16060fa5d014c03ab4fe8b1867f79fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Genotype
135 rdf:type schema:DefinedTerm
136 Ne2ade8a050be476292100cdeed058e1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Patient Outcome Assessment
138 rdf:type schema:DefinedTerm
139 Ne3cf405cea304269a6c8d631c560427a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Phenotype
141 rdf:type schema:DefinedTerm
142 Neb15d804f6294ce2adfa73c77f9cdf1a schema:volumeNumber 19
143 rdf:type schema:PublicationVolume
144 Ned630ee39ef041c0ba923d7243afeaa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Genetic Association Studies
146 rdf:type schema:DefinedTerm
147 Nf262ce6fb9434459b057c5471d94e737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
151 schema:name Biological Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
154 schema:name Genetics
155 rdf:type schema:DefinedTerm
156 sg:journal.1119411 schema:issn 1098-3600
157 1530-0366
158 schema:name Genetics in Medicine
159 rdf:type schema:Periodical
160 sg:person.01016721737.77 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
161 schema:familyName Tarailo-Graovac
162 schema:givenName Maja
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016721737.77
164 rdf:type schema:Person
165 sg:person.01037477313.40 schema:affiliation https://www.grid.ac/institutes/grid.5650.6
166 schema:familyName van Karnebeek
167 schema:givenName Clara D M
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037477313.40
169 rdf:type schema:Person
170 sg:person.01164162122.26 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
171 schema:familyName Wasserman
172 schema:givenName Wyeth W
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26
174 rdf:type schema:Person
175 sg:person.016321334433.35 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
176 schema:familyName Matthews
177 schema:givenName Allison
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016321334433.35
179 rdf:type schema:Person
180 sg:person.0656241157.11 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
181 schema:familyName Zhu
182 schema:givenName Jing Yun Alice
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656241157.11
184 rdf:type schema:Person
185 sg:pub.10.1023/b:boli.0000042983.60840.f3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050980188
186 https://doi.org/10.1023/b:boli.0000042983.60840.f3
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/gim.2015.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016113453
189 https://doi.org/10.1038/gim.2015.180
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/gim.2015.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022229472
192 https://doi.org/10.1038/gim.2015.30
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/gim.2016.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041583016
195 https://doi.org/10.1038/gim.2016.88
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature19057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022281897
198 https://doi.org/10.1038/nature19057
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nbt.1754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307928
201 https://doi.org/10.1038/nbt.1754
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nbt.3514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032305204
204 https://doi.org/10.1038/nbt.3514
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/ng.868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043037714
207 https://doi.org/10.1038/ng.868
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nm.3733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012926250
210 https://doi.org/10.1038/nm.3733
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nrg3555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001268995
213 https://doi.org/10.1038/nrg3555
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1001/jama.2014.14601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035740594
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1001/jama.2016.1519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006694255
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/ajh.24063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561781
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/ajmg.a.31982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003219682
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1002/ajmg.a.35265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041835743
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/ajmg.a.37476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047518309
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1002/humu.22918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007708889
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/humu.23203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083859632
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.ajhg.2010.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016114680
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.ajhg.2012.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008579771
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.ajhg.2012.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008037521
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.ajhg.2013.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041976887
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1056/nejmoa1408617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037067588
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1056/nejmoa1409405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023672394
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1056/nejmoa1515792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020152170
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1056/nejmsa1507092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023338609
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1084/jem.20131141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004968521
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1084/jem.20140520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020196812
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1086/323610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058624212
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/bioinformatics/btu168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030318872
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/nar/gkv1222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034754276
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1111/cge.12847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044267859
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1126/scitranslmed.3001756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031928297
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1126/scitranslmed.aag2367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025923770
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1136/jmg.2010.076836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031507439
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1182/blood-2009-01-198416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031376291
270 rdf:type schema:CreativeWork
271 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
272 schema:name BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
273 Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
274 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
275 Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.5650.6 schema:alternateName Academic Medical Center
278 schema:name BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
279 Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
280 Department of Pediatrics, Emma Children’s Hospital, Academic Medical Centre, Amsterdam, The Netherlands
281 Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.7149.b schema:alternateName University of Belgrade
284 schema:name BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
285 Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
286 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
287 Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...