A comparison of Cox and logistic regression for use in genome-wide association studies of cohort and case-cohort design View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

James R Staley, Edmund Jones, Stephen Kaptoge, Adam S Butterworth, Michael J Sweeting, Angela M Wood, Joanna M M Howson

ABSTRACT

Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort designs, as it is less computationally expensive. Although Cox and logistic regression models have been compared previously in cohort studies, this work does not completely cover the GWAS setting nor extend to the case-cohort study design. Here, we evaluated Cox and logistic regression applied to cohort and case-cohort genetic association studies using simulated data and genetic data from the EPIC-CVD study. In the cohort setting, there was a modest improvement in power to detect SNP-disease associations using Cox regression compared with logistic regression, which increased as the disease incidence increased. In contrast, logistic regression had more power than (Prentice weighted) Cox regression in the case-cohort setting. Logistic regression yielded inflated effect estimates (assuming the hazard ratio is the underlying measure of association) for both study designs, especially for SNPs with greater effect on disease. Given logistic regression is substantially more computationally efficient than Cox regression in both settings, we propose a two-step approach to GWAS in cohort and case-cohort studies. First to analyse all SNPs with logistic regression to identify associated variants below a pre-defined P-value threshold, and second to fit Cox regression (appropriately weighted in case-cohort studies) to those identified SNPs to ensure accurate estimation of association with disease. More... »

PAGES

854

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ejhg.2017.78

DOI

http://dx.doi.org/10.1038/ejhg.2017.78

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085118888

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28594416


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staley", 
        "givenName": "James R", 
        "id": "sg:person.01220463241.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220463241.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Edmund", 
        "id": "sg:person.01114202343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114202343.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaptoge", 
        "givenName": "Stephen", 
        "id": "sg:person.01237130027.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237130027.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK", 
            "The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butterworth", 
        "givenName": "Adam S", 
        "id": "sg:person.01132715706.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132715706.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK", 
            "The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sweeting", 
        "givenName": "Michael J", 
        "id": "sg:person.016652736667.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652736667.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK", 
            "The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wood", 
        "givenName": "Angela M", 
        "id": "sg:person.015747463462.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747463462.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Howson", 
        "givenName": "Joanna M M", 
        "id": "sg:person.07773763167.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07773763167.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1097-0274(199801)33:1<33::aid-ajim5>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000139754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000937327", 
          "https://doi.org/10.1038/ng.784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000937327", 
          "https://doi.org/10.1038/ng.784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780081211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007839691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-011-2182-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016705888", 
          "https://doi.org/10.1007/s00125-011-2182-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-011-2182-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016705888", 
          "https://doi.org/10.1007/s00125-011-2182-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024601187", 
          "https://doi.org/10.1038/ng.2480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-006-9096-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024789990", 
          "https://doi.org/10.1007/s10654-006-9096-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031184798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034949131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780080502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039291058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(99)00102-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040513882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9681(83)90165-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040921565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2008.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042406779", 
          "https://doi.org/10.1038/ejhg.2008.59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9681(87)90127-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047554675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/73.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975474"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort designs, as it is less computationally expensive. Although Cox and logistic regression models have been compared previously in cohort studies, this work does not completely cover the GWAS setting nor extend to the case-cohort study design. Here, we evaluated Cox and logistic regression applied to cohort and case-cohort genetic association studies using simulated data and genetic data from the EPIC-CVD study. In the cohort setting, there was a modest improvement in power to detect SNP-disease associations using Cox regression compared with logistic regression, which increased as the disease incidence increased. In contrast, logistic regression had more power than (Prentice weighted) Cox regression in the case-cohort setting. Logistic regression yielded inflated effect estimates (assuming the hazard ratio is the underlying measure of association) for both study designs, especially for SNPs with greater effect on disease. Given logistic regression is substantially more computationally efficient than Cox regression in both settings, we propose a two-step approach to GWAS in cohort and case-cohort studies. First to analyse all SNPs with logistic regression to identify associated variants below a pre-defined P-value threshold, and second to fit Cox regression (appropriately weighted in case-cohort studies) to those identified SNPs to ensure accurate estimation of association with disease.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ejhg.2017.78", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3560309", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2773298", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5141446", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3781764", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5142692", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2765219", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560622", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2774886", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "A comparison of Cox and logistic regression for use in genome-wide association studies of cohort and case-cohort design", 
    "pagination": "854", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "164dacf37b4d03598499d0d16aaa7fcbdf273ade49112727d00dde467569a373"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28594416"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9302235"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ejhg.2017.78"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085118888"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ejhg.2017.78", 
      "https://app.dimensions.ai/details/publication/pub.1085118888"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ejhg201778"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2017.78'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2017.78'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2017.78'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2017.78'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      49 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ejhg.2017.78 schema:about N07d5986a3be04fac87463d0d64243434
2 N5729b2e8f4f8453b9a2795b264c2bf4c
3 N88d1361627994693b08827b6c5e1de0c
4 Nca140fa9f5a545b987a8b84e81bfd382
5 Neecec5f9ebdd4a5a8cbcad6e9832f239
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N74313f3ffefd432895457071e050dd00
9 schema:citation sg:pub.10.1007/s00125-011-2182-9
10 sg:pub.10.1007/s10654-006-9096-8
11 sg:pub.10.1038/ejhg.2008.59
12 sg:pub.10.1038/ng.2480
13 sg:pub.10.1038/ng.784
14 https://doi.org/10.1002/(sici)1097-0274(199801)33:1<33::aid-ajim5>3.0.co;2-x
15 https://doi.org/10.1002/sim.2059
16 https://doi.org/10.1002/sim.4780080502
17 https://doi.org/10.1002/sim.4780081211
18 https://doi.org/10.1016/0021-9681(83)90165-0
19 https://doi.org/10.1016/0021-9681(87)90127-5
20 https://doi.org/10.1016/s0895-4356(99)00102-x
21 https://doi.org/10.1093/bioinformatics/btm108
22 https://doi.org/10.1093/biomet/73.1.1
23 https://doi.org/10.2307/2529884
24 schema:datePublished 2017-06
25 schema:datePublishedReg 2017-06-01
26 schema:description Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort designs, as it is less computationally expensive. Although Cox and logistic regression models have been compared previously in cohort studies, this work does not completely cover the GWAS setting nor extend to the case-cohort study design. Here, we evaluated Cox and logistic regression applied to cohort and case-cohort genetic association studies using simulated data and genetic data from the EPIC-CVD study. In the cohort setting, there was a modest improvement in power to detect SNP-disease associations using Cox regression compared with logistic regression, which increased as the disease incidence increased. In contrast, logistic regression had more power than (Prentice weighted) Cox regression in the case-cohort setting. Logistic regression yielded inflated effect estimates (assuming the hazard ratio is the underlying measure of association) for both study designs, especially for SNPs with greater effect on disease. Given logistic regression is substantially more computationally efficient than Cox regression in both settings, we propose a two-step approach to GWAS in cohort and case-cohort studies. First to analyse all SNPs with logistic regression to identify associated variants below a pre-defined P-value threshold, and second to fit Cox regression (appropriately weighted in case-cohort studies) to those identified SNPs to ensure accurate estimation of association with disease.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N196069db8beb4b719ab72139d4427b8a
31 N79bf24256a404448be9cae83e3dc0be9
32 sg:journal.1103410
33 schema:name A comparison of Cox and logistic regression for use in genome-wide association studies of cohort and case-cohort design
34 schema:pagination 854
35 schema:productId N3f9ddaff1f8e4c66a9746b0f1028b1f9
36 N606a4b7079a444ef9fb369c6c57d6529
37 N60726bcf2a114560ab1159679193398d
38 Ncfe857d4daaa4df69cd7bc6315865db2
39 Nd165792ef75943b88f14d42141387ced
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085118888
41 https://doi.org/10.1038/ejhg.2017.78
42 schema:sdDatePublished 2019-04-10T18:56
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N86d7c7d02b0042ad9824f0b93822bc1d
45 schema:url https://www.nature.com/articles/ejhg201778
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N07d5986a3be04fac87463d0d64243434 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Genome-Wide Association Study
51 rdf:type schema:DefinedTerm
52 N196069db8beb4b719ab72139d4427b8a schema:issueNumber 7
53 rdf:type schema:PublicationIssue
54 N3f9ddaff1f8e4c66a9746b0f1028b1f9 schema:name doi
55 schema:value 10.1038/ejhg.2017.78
56 rdf:type schema:PropertyValue
57 N5729b2e8f4f8453b9a2795b264c2bf4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Logistic Models
59 rdf:type schema:DefinedTerm
60 N606a4b7079a444ef9fb369c6c57d6529 schema:name pubmed_id
61 schema:value 28594416
62 rdf:type schema:PropertyValue
63 N60726bcf2a114560ab1159679193398d schema:name readcube_id
64 schema:value 164dacf37b4d03598499d0d16aaa7fcbdf273ade49112727d00dde467569a373
65 rdf:type schema:PropertyValue
66 N74313f3ffefd432895457071e050dd00 rdf:first sg:person.01220463241.34
67 rdf:rest N7a49f3d038384495ba1cd3930766f4de
68 N79bf24256a404448be9cae83e3dc0be9 schema:volumeNumber 25
69 rdf:type schema:PublicationVolume
70 N7a49f3d038384495ba1cd3930766f4de rdf:first sg:person.01114202343.35
71 rdf:rest Nf451d7c38b834606933182ce8107ae2b
72 N86d7c7d02b0042ad9824f0b93822bc1d schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N88d1361627994693b08827b6c5e1de0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Polymorphism, Single Nucleotide
76 rdf:type schema:DefinedTerm
77 Nca140fa9f5a545b987a8b84e81bfd382 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Humans
79 rdf:type schema:DefinedTerm
80 Ncc5837a1b4134b2a9c7e0c7377afb165 rdf:first sg:person.07773763167.28
81 rdf:rest rdf:nil
82 Ncfe857d4daaa4df69cd7bc6315865db2 schema:name nlm_unique_id
83 schema:value 9302235
84 rdf:type schema:PropertyValue
85 Nd165792ef75943b88f14d42141387ced schema:name dimensions_id
86 schema:value pub.1085118888
87 rdf:type schema:PropertyValue
88 Nd9ef857875f549da8df88d8a32f5f722 rdf:first sg:person.01132715706.47
89 rdf:rest Nf13c5dd238e7432f822db53fc7c24211
90 Ndb4a840283734e54a7853daa8de284b9 rdf:first sg:person.015747463462.79
91 rdf:rest Ncc5837a1b4134b2a9c7e0c7377afb165
92 Neecec5f9ebdd4a5a8cbcad6e9832f239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Data Interpretation, Statistical
94 rdf:type schema:DefinedTerm
95 Nf13c5dd238e7432f822db53fc7c24211 rdf:first sg:person.016652736667.34
96 rdf:rest Ndb4a840283734e54a7853daa8de284b9
97 Nf451d7c38b834606933182ce8107ae2b rdf:first sg:person.01237130027.85
98 rdf:rest Nd9ef857875f549da8df88d8a32f5f722
99 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biological Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
103 schema:name Genetics
104 rdf:type schema:DefinedTerm
105 sg:grant.2765219 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
106 rdf:type schema:MonetaryGrant
107 sg:grant.2773298 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
108 rdf:type schema:MonetaryGrant
109 sg:grant.2774886 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
110 rdf:type schema:MonetaryGrant
111 sg:grant.3560309 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
112 rdf:type schema:MonetaryGrant
113 sg:grant.3560622 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
114 rdf:type schema:MonetaryGrant
115 sg:grant.3781764 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
116 rdf:type schema:MonetaryGrant
117 sg:grant.5141446 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
118 rdf:type schema:MonetaryGrant
119 sg:grant.5142692 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2017.78
120 rdf:type schema:MonetaryGrant
121 sg:journal.1103410 schema:issn 1018-4813
122 1476-5438
123 schema:name European Journal of Human Genetics
124 rdf:type schema:Periodical
125 sg:person.01114202343.35 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
126 schema:familyName Jones
127 schema:givenName Edmund
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114202343.35
129 rdf:type schema:Person
130 sg:person.01132715706.47 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
131 schema:familyName Butterworth
132 schema:givenName Adam S
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132715706.47
134 rdf:type schema:Person
135 sg:person.01220463241.34 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
136 schema:familyName Staley
137 schema:givenName James R
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220463241.34
139 rdf:type schema:Person
140 sg:person.01237130027.85 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
141 schema:familyName Kaptoge
142 schema:givenName Stephen
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237130027.85
144 rdf:type schema:Person
145 sg:person.015747463462.79 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
146 schema:familyName Wood
147 schema:givenName Angela M
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747463462.79
149 rdf:type schema:Person
150 sg:person.016652736667.34 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
151 schema:familyName Sweeting
152 schema:givenName Michael J
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652736667.34
154 rdf:type schema:Person
155 sg:person.07773763167.28 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
156 schema:familyName Howson
157 schema:givenName Joanna M M
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07773763167.28
159 rdf:type schema:Person
160 sg:pub.10.1007/s00125-011-2182-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016705888
161 https://doi.org/10.1007/s00125-011-2182-9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10654-006-9096-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024789990
164 https://doi.org/10.1007/s10654-006-9096-8
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ejhg.2008.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042406779
167 https://doi.org/10.1038/ejhg.2008.59
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ng.2480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024601187
170 https://doi.org/10.1038/ng.2480
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/ng.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000937327
173 https://doi.org/10.1038/ng.784
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/(sici)1097-0274(199801)33:1<33::aid-ajim5>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000139754
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/sim.2059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034949131
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/sim.4780080502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039291058
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/sim.4780081211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007839691
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0021-9681(83)90165-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040921565
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0021-9681(87)90127-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047554675
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0895-4356(99)00102-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040513882
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btm108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031184798
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/biomet/73.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419563
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2307/2529884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975474
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
196 schema:name Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
197 The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...