Estimating time to the most recent common ancestor (TMRCA): comparison and application of eight methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08

AUTHORS

Jin Zhou, Yik-Ying Teo

ABSTRACT

Investigating how an ancestral population diverges to give rise to distinct subpopulations remains a fundamental pursuit in population genetics. There is broad consensus for the 'Out-of-Africa' hypothesis that states that modern humans arose ∼200 000 years ago in Africa and spread throughout the continent ∼100 000 years ago. This was followed by several waves of major population dispersals across the globe, although the exact nature of the population divergence remains debatable. Existing methods to estimate population divergence time differ in their methodological frameworks and demographic assumptions, and require different types of genetic data as input. These fundamental differences often result in the methods producing inconsistent estimates of the population divergence time, further confounding attempts to robustly uncover the history of human migration, especially when most population genetic studies do not employ multiple methods to estimate the time to the most recent common ancestor (TMRCA). Here, we chose eight popular methods for estimating TMRCA and evaluated their robustness and accuracy in correctly identifying the true TMRCA through a series of simulations that mimicked different evolutionary scenarios. We subsequently applied all eight methods to estimate the population divergence time between Southeast Asian Malays and South Asian Indians using deep whole-genome sequencing data. More... »

PAGES

1195-1201

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ejhg.2015.258

DOI

http://dx.doi.org/10.1038/ejhg.2015.258

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043083056

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26669663


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "African Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Human Migration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pedigree", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Statistics and Applied Probability, National University of Singapore, Singapore."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jin", 
        "id": "sg:person.0627332326.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627332326.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genome Institute of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.418377.e", 
          "name": [
            "Department of Statistics and Applied Probability, National University of Singapore, Singapore.", 
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore.", 
            "NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore.", 
            "Life Sciences Institute, National University of Singapore, Singapore.", 
            "Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teo", 
        "givenName": "Yik-Ying", 
        "id": "sg:person.01260753642.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260753642.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng.3015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005845061", 
          "https://doi.org/10.1038/ng.3015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416752", 
          "https://doi.org/10.1038/nature04521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416752", 
          "https://doi.org/10.1038/nature04521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416752", 
          "https://doi.org/10.1038/nature04521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016472358", 
          "https://doi.org/10.1038/nature12886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.1.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020190319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.1.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020190319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025161467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025201160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027978732", 
          "https://doi.org/10.1038/nature11258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2011.05178.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029220741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/325031a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029700550", 
          "https://doi.org/10.1038/325031a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031373191", 
          "https://doi.org/10.1038/nrg3295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.119636.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033310616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1001319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034352061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.084301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034530566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043198297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ge.29.120195.002153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043345559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247164", 
          "https://doi.org/10.1038/nature10231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.387103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046110116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046660436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6409707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046949072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048341350", 
          "https://doi.org/10.1038/ng.937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252964", 
          "https://doi.org/10.1038/35075590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252964", 
          "https://doi.org/10.1038/35075590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1211177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052025136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1109792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1840702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062509890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074734644", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083061673", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "Investigating how an ancestral population diverges to give rise to distinct subpopulations remains a fundamental pursuit in population genetics. There is broad consensus for the 'Out-of-Africa' hypothesis that states that modern humans arose \u223c200\u2009000 years ago in Africa and spread throughout the continent \u223c100\u2009000 years ago. This was followed by several waves of major population dispersals across the globe, although the exact nature of the population divergence remains debatable. Existing methods to estimate population divergence time differ in their methodological frameworks and demographic assumptions, and require different types of genetic data as input. These fundamental differences often result in the methods producing inconsistent estimates of the population divergence time, further confounding attempts to robustly uncover the history of human migration, especially when most population genetic studies do not employ multiple methods to estimate the time to the most recent common ancestor (TMRCA). Here, we chose eight popular methods for estimating TMRCA and evaluated their robustness and accuracy in correctly identifying the true TMRCA through a series of simulations that mimicked different evolutionary scenarios. We subsequently applied all eight methods to estimate the population divergence time between Southeast Asian Malays and South Asian Indians using deep whole-genome sequencing data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ejhg.2015.258", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Estimating time to the most recent common ancestor (TMRCA): comparison and application of eight methods", 
    "pagination": "1195-1201", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd384427b93370ceaceddb19958188ccef39ee34cae9da7a22717e0cc6a5abcb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26669663"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9302235"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ejhg.2015.258"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043083056"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ejhg.2015.258", 
      "https://app.dimensions.ai/details/publication/pub.1043083056"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ejhg/journal/v24/n8/full/ejhg2015258a.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2015.258'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2015.258'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2015.258'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2015.258'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      68 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ejhg.2015.258 schema:about N03975b5fc0a743978772a29ef4efed7f
2 N3334b6ce6770437fa6f13847962fdf30
3 N3dc5a5471b5048d9a0f124261ba450c0
4 N40e09e12b3334472b95a321cc6e23e00
5 N585a3a92ff864ad6990d891c435eb49f
6 N65a209c9985e4797b5493db20ab548fd
7 N8ab0f756318e408e93902dcdd92d9555
8 Nb3efc10ab5f144128b71e2cb03a01ac9
9 Ncd9f9d141ba54ba2a80afa39c5aecbeb
10 Ne98b657d675f48599eaca1abf8e73962
11 Nf7ce4f80bc9f45c4bb2d5e90fbf620c4
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author Nef69fcf931564240bfdf3f821ab07db8
15 schema:citation sg:pub.10.1038/325031a0
16 sg:pub.10.1038/35075590
17 sg:pub.10.1038/nature04521
18 sg:pub.10.1038/nature10231
19 sg:pub.10.1038/nature11258
20 sg:pub.10.1038/nature12886
21 sg:pub.10.1038/ng.3015
22 sg:pub.10.1038/ng.937
23 sg:pub.10.1038/nrg3295
24 https://app.dimensions.ai/details/publication/pub.1074734644
25 https://app.dimensions.ai/details/publication/pub.1083061673
26 https://doi.org/10.1016/j.tig.2012.06.006
27 https://doi.org/10.1093/bioinformatics/18.2.337
28 https://doi.org/10.1101/gr.119636.110
29 https://doi.org/10.1101/gr.387103
30 https://doi.org/10.1101/gr.6409707
31 https://doi.org/10.1111/j.1365-294x.2011.05178.x
32 https://doi.org/10.1126/science.1109792
33 https://doi.org/10.1126/science.1211177
34 https://doi.org/10.1126/science.1840702
35 https://doi.org/10.1146/annurev.ge.29.120195.002153
36 https://doi.org/10.1371/journal.pgen.0020105
37 https://doi.org/10.1371/journal.pgen.0030007
38 https://doi.org/10.1371/journal.pgen.0030047
39 https://doi.org/10.1371/journal.pgen.1000695
40 https://doi.org/10.1371/journal.pgen.1001319
41 https://doi.org/10.1534/genetics.107.084301
42 https://doi.org/10.1534/genetics.166.1.351
43 schema:datePublished 2016-08
44 schema:datePublishedReg 2016-08-01
45 schema:description Investigating how an ancestral population diverges to give rise to distinct subpopulations remains a fundamental pursuit in population genetics. There is broad consensus for the 'Out-of-Africa' hypothesis that states that modern humans arose ∼200 000 years ago in Africa and spread throughout the continent ∼100 000 years ago. This was followed by several waves of major population dispersals across the globe, although the exact nature of the population divergence remains debatable. Existing methods to estimate population divergence time differ in their methodological frameworks and demographic assumptions, and require different types of genetic data as input. These fundamental differences often result in the methods producing inconsistent estimates of the population divergence time, further confounding attempts to robustly uncover the history of human migration, especially when most population genetic studies do not employ multiple methods to estimate the time to the most recent common ancestor (TMRCA). Here, we chose eight popular methods for estimating TMRCA and evaluated their robustness and accuracy in correctly identifying the true TMRCA through a series of simulations that mimicked different evolutionary scenarios. We subsequently applied all eight methods to estimate the population divergence time between Southeast Asian Malays and South Asian Indians using deep whole-genome sequencing data.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N8be2f59083d4460e81b85a34f904827e
50 N98f643832e9e487cb90d446ebaeb70f2
51 sg:journal.1103410
52 schema:name Estimating time to the most recent common ancestor (TMRCA): comparison and application of eight methods
53 schema:pagination 1195-1201
54 schema:productId N4fda3798d8224f9ab6fc999860562779
55 N5fcd5c96d742410fb1b5f85db0a2c1fd
56 N685beb5fa6b246b9a3e04200bf70e728
57 Na0df58bfd2e14058b12ed59cca34d294
58 Nae5d12fe9a44435ebce5282869157fed
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043083056
60 https://doi.org/10.1038/ejhg.2015.258
61 schema:sdDatePublished 2019-04-11T01:47
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N09d96782291745dd805b0b3e96372b01
64 schema:url http://www.nature.com/ejhg/journal/v24/n8/full/ejhg2015258a.html
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N03975b5fc0a743978772a29ef4efed7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Human Migration
70 rdf:type schema:DefinedTerm
71 N09d96782291745dd805b0b3e96372b01 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N3334b6ce6770437fa6f13847962fdf30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Asian Continental Ancestry Group
75 rdf:type schema:DefinedTerm
76 N3dc5a5471b5048d9a0f124261ba450c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Algorithms
78 rdf:type schema:DefinedTerm
79 N40e09e12b3334472b95a321cc6e23e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name African Continental Ancestry Group
81 rdf:type schema:DefinedTerm
82 N41e3e244c1d64e2f9a5443192d2e2988 rdf:first sg:person.01260753642.13
83 rdf:rest rdf:nil
84 N4fda3798d8224f9ab6fc999860562779 schema:name readcube_id
85 schema:value cd384427b93370ceaceddb19958188ccef39ee34cae9da7a22717e0cc6a5abcb
86 rdf:type schema:PropertyValue
87 N585a3a92ff864ad6990d891c435eb49f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Pedigree
89 rdf:type schema:DefinedTerm
90 N5fcd5c96d742410fb1b5f85db0a2c1fd schema:name nlm_unique_id
91 schema:value 9302235
92 rdf:type schema:PropertyValue
93 N65a209c9985e4797b5493db20ab548fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Evolution, Molecular
95 rdf:type schema:DefinedTerm
96 N685beb5fa6b246b9a3e04200bf70e728 schema:name doi
97 schema:value 10.1038/ejhg.2015.258
98 rdf:type schema:PropertyValue
99 N8ab0f756318e408e93902dcdd92d9555 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Genetic Association Studies
101 rdf:type schema:DefinedTerm
102 N8be2f59083d4460e81b85a34f904827e schema:volumeNumber 24
103 rdf:type schema:PublicationVolume
104 N98f643832e9e487cb90d446ebaeb70f2 schema:issueNumber 8
105 rdf:type schema:PublicationIssue
106 Na0df58bfd2e14058b12ed59cca34d294 schema:name dimensions_id
107 schema:value pub.1043083056
108 rdf:type schema:PropertyValue
109 Nae5d12fe9a44435ebce5282869157fed schema:name pubmed_id
110 schema:value 26669663
111 rdf:type schema:PropertyValue
112 Nb3efc10ab5f144128b71e2cb03a01ac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Humans
114 rdf:type schema:DefinedTerm
115 Ncd9f9d141ba54ba2a80afa39c5aecbeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Linkage Disequilibrium
117 rdf:type schema:DefinedTerm
118 Ne98b657d675f48599eaca1abf8e73962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genome, Human
120 rdf:type schema:DefinedTerm
121 Nef69fcf931564240bfdf3f821ab07db8 rdf:first sg:person.0627332326.71
122 rdf:rest N41e3e244c1d64e2f9a5443192d2e2988
123 Nf7ce4f80bc9f45c4bb2d5e90fbf620c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Models, Genetic
125 rdf:type schema:DefinedTerm
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
130 schema:name Genetics
131 rdf:type schema:DefinedTerm
132 sg:journal.1103410 schema:issn 1018-4813
133 1476-5438
134 schema:name European Journal of Human Genetics
135 rdf:type schema:Periodical
136 sg:person.01260753642.13 schema:affiliation https://www.grid.ac/institutes/grid.418377.e
137 schema:familyName Teo
138 schema:givenName Yik-Ying
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260753642.13
140 rdf:type schema:Person
141 sg:person.0627332326.71 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
142 schema:familyName Zhou
143 schema:givenName Jin
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627332326.71
145 rdf:type schema:Person
146 sg:pub.10.1038/325031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029700550
147 https://doi.org/10.1038/325031a0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/35075590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049252964
150 https://doi.org/10.1038/35075590
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature04521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010416752
153 https://doi.org/10.1038/nature04521
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature10231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247164
156 https://doi.org/10.1038/nature10231
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature11258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027978732
159 https://doi.org/10.1038/nature11258
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature12886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016472358
162 https://doi.org/10.1038/nature12886
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ng.3015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005845061
165 https://doi.org/10.1038/ng.3015
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/ng.937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048341350
168 https://doi.org/10.1038/ng.937
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nrg3295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031373191
171 https://doi.org/10.1038/nrg3295
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1074734644 schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1083061673 schema:CreativeWork
175 https://doi.org/10.1016/j.tig.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025201160
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/18.2.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789793
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1101/gr.119636.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033310616
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1101/gr.387103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046110116
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1101/gr.6409707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046949072
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/j.1365-294x.2011.05178.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029220741
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1109792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451600
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1211177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052025136
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1840702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062509890
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1146/annurev.ge.29.120195.002153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043345559
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1371/journal.pgen.0020105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025161467
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1371/journal.pgen.0030007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445247
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1371/journal.pgen.0030047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043198297
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1371/journal.pgen.1000695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046660436
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/journal.pgen.1001319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034352061
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1534/genetics.107.084301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034530566
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1534/genetics.166.1.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020190319
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.418377.e schema:alternateName Genome Institute of Singapore
210 schema:name Department of Statistics and Applied Probability, National University of Singapore, Singapore.
211 Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.
212 Life Sciences Institute, National University of Singapore, Singapore.
213 NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore.
214 Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
217 schema:name Department of Statistics and Applied Probability, National University of Singapore, Singapore.
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...