A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Christina Loley, Inke R König, Ludwig Hothorn, Andreas Ziegler

ABSTRACT

The analysis of genome-wide genetic association studies generally starts with univariate statistical tests of each single-nucleotide polymorphism. The standard approach is the Cochran-Armitage trend test or its logistic regression equivalent although this approach can lose considerable power if the underlying genetic model is not additive. An alternative is the MAX test, which is robust against the three basic modes of inheritance. Here, the asymptotic distribution of the MAX test is derived using the generalized linear model together with the Delta method and multiple contrasts. The approach is applicable to binary, quantitative, and survival traits. It may be used for unrelated individuals, family-based studies, and matched pairs. The approach provides point and interval effect estimates and allows selecting the most plausible genetic model using the minimum P-value. R code is provided. A Monte-Carlo simulation study shows that the asymptotic MAX test framework meets type I error levels well, has good power, and good model selection properties for minor allele frequencies ≥0.3. Pearson's χ(2)-test is superior for lower minor allele frequencies with low frequencies for the rare homozygous genotype. In these cases, the model selection procedure should be used with caution. The use of the MAX test is illustrated by reanalyzing findings from seven genome-wide association studies including case-control, matched pairs, and quantitative trait data. More... »

PAGES

1442

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ejhg.2013.62

DOI

http://dx.doi.org/10.1038/ejhg.2013.62

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015260626

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23572026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Hospital Schleswig-Holstein", 
          "id": "https://www.grid.ac/institutes/grid.412468.d", 
          "name": [
            "Institut f\u00fcr Medizinische Biometrie und Statistik, Universit\u00e4t zu L\u00fcbeck, Universit\u00e4tsklinikum Schleswig-Holstein, Campus L\u00fcbeck, L\u00fcbeck, Germany", 
            "Medizinische Klinik II, Universit\u00e4tsklinikum Schleswig-Holstein, Campus L\u00fcbeck, L\u00fcbeck, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loley", 
        "givenName": "Christina", 
        "id": "sg:person.01163057741.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163057741.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of L\u00fcbeck", 
          "id": "https://www.grid.ac/institutes/grid.4562.5", 
          "name": [
            "Institut f\u00fcr Medizinische Biometrie und Statistik, Universit\u00e4t zu L\u00fcbeck, Universit\u00e4tsklinikum Schleswig-Holstein, Campus L\u00fcbeck, L\u00fcbeck, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6nig", 
        "givenName": "Inke R", 
        "id": "sg:person.0636132126.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636132126.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Biostatistik, Leibniz Universit\u00e4t Hannover, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hothorn", 
        "givenName": "Ludwig", 
        "id": "sg:person.0640117311.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640117311.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of L\u00fcbeck", 
          "id": "https://www.grid.ac/institutes/grid.4562.5", 
          "name": [
            "Institut f\u00fcr Medizinische Biometrie und Statistik, Universit\u00e4t zu L\u00fcbeck, Universit\u00e4tsklinikum Schleswig-Holstein, Campus L\u00fcbeck, L\u00fcbeck, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "Andreas", 
        "id": "sg:person.01207532423.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207532423.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000064976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006858010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011492809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0514-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013967397", 
          "https://doi.org/10.1007/s00439-008-0514-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0514-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013967397", 
          "https://doi.org/10.1007/s00439-008-0514-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0514-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013967397", 
          "https://doi.org/10.1007/s00439-008-0514-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2009.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014376336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000334085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018243423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-1809.2002.00104.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020131509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021006418", 
          "https://doi.org/10.1038/nrg2615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021006418", 
          "https://doi.org/10.1038/nrg2615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021651350", 
          "https://doi.org/10.1038/nature11334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024376174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024376174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2008.00437.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025427460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027495086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2009.01185.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028831832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029392680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029392680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyi169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030009210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2008.00500.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032031757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035743740", 
          "https://doi.org/10.1038/ng.388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035743740", 
          "https://doi.org/10.1038/ng.388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200800203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035994492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200800203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035994492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000323768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038611771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10519-011-9450-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040335901", 
          "https://doi.org/10.1007/s10519-011-9450-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10519-011-9450-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040335901", 
          "https://doi.org/10.1007/s10519-011-9450-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00506.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040972360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyi183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041266836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyi183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041266836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045054651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045054651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-11-91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048480538", 
          "https://doi.org/10.1186/1471-2156-11-91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048704328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1529-8817.2003.00065.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050629593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050935305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050935305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051113614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/338007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058637652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/430507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058716585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069978889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/sii.2009.v2.n2.a4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072464076"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "The analysis of genome-wide genetic association studies generally starts with univariate statistical tests of each single-nucleotide polymorphism. The standard approach is the Cochran-Armitage trend test or its logistic regression equivalent although this approach can lose considerable power if the underlying genetic model is not additive. An alternative is the MAX test, which is robust against the three basic modes of inheritance. Here, the asymptotic distribution of the MAX test is derived using the generalized linear model together with the Delta method and multiple contrasts. The approach is applicable to binary, quantitative, and survival traits. It may be used for unrelated individuals, family-based studies, and matched pairs. The approach provides point and interval effect estimates and allows selecting the most plausible genetic model using the minimum P-value. R code is provided. A Monte-Carlo simulation study shows that the asymptotic MAX test framework meets type I error levels well, has good power, and good model selection properties for minor allele frequencies \u22650.3. Pearson's \u03c7(2)-test is superior for lower minor allele frequencies with low frequencies for the rare homozygous genotype. In these cases, the model selection procedure should be used with caution. The use of the MAX test is illustrated by reanalyzing findings from seven genome-wide association studies including case-control, matched pairs, and quantitative trait data. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ejhg.2013.62", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3625736", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3788712", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3626430", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2775947", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2581587", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model", 
    "pagination": "1442", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48b575e6dce89047071358863b851b597b9e1d00bd2ee4071164ab0ed3b09355"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23572026"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9302235"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ejhg.2013.62"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015260626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ejhg.2013.62", 
      "https://app.dimensions.ai/details/publication/pub.1015260626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ejhg201362"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2013.62'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2013.62'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2013.62'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2013.62'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      73 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ejhg.2013.62 schema:about N1cf0f5cae0ff4dfe86110215bde94f29
2 N3a8cb6597ea5427cbd36215a6ec3b94b
3 N404b328945f142c385bb83c6489b1f2d
4 N6959b8cc4e2e4f6297a9372d9979f7d8
5 N8628bd15544d477da586069c8bc17d00
6 N9396e84376244651b1b36e224d8c272e
7 N988c28d0ba2d4b72b73880c496db90b8
8 N9b024e34969047e8a357f5205ceff4c7
9 Nbdf2b6f5b169482aa589231fd9b8f1e9
10 Ne55c32a1c98c47c29035d0927d948fb1
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Ncea92eae42a544babb21c20cf9f1b514
14 schema:citation sg:pub.10.1007/s00439-008-0514-8
15 sg:pub.10.1007/s10519-011-9450-9
16 sg:pub.10.1038/nature05911
17 sg:pub.10.1038/nature11334
18 sg:pub.10.1038/ng.388
19 sg:pub.10.1038/nrg2615
20 sg:pub.10.1186/1471-2156-11-91
21 https://doi.org/10.1002/bimj.200800203
22 https://doi.org/10.1002/gepi.20299
23 https://doi.org/10.1002/gepi.20455
24 https://doi.org/10.1002/gepi.20510
25 https://doi.org/10.1002/gepi.20524
26 https://doi.org/10.1002/gepi.20620
27 https://doi.org/10.1002/sim.2278
28 https://doi.org/10.1002/sim.3759
29 https://doi.org/10.1016/j.csda.2009.07.011
30 https://doi.org/10.1046/j.1469-1809.2002.00104.x
31 https://doi.org/10.1046/j.1529-8817.2003.00065.x
32 https://doi.org/10.1086/338007
33 https://doi.org/10.1086/430507
34 https://doi.org/10.1093/ije/dyi169
35 https://doi.org/10.1093/ije/dyi183
36 https://doi.org/10.1111/j.1469-1809.2008.00437.x
37 https://doi.org/10.1111/j.1469-1809.2008.00500.x
38 https://doi.org/10.1111/j.1469-1809.2009.00506.x
39 https://doi.org/10.1111/j.1541-0420.2009.01185.x
40 https://doi.org/10.1159/000064976
41 https://doi.org/10.1159/000323768
42 https://doi.org/10.1159/000334085
43 https://doi.org/10.18637/jss.v033.i01
44 https://doi.org/10.18637/jss.v033.i08
45 https://doi.org/10.2202/1544-6115.1408
46 https://doi.org/10.2307/2533494
47 https://doi.org/10.4310/sii.2009.v2.n2.a4
48 schema:datePublished 2013-12
49 schema:datePublishedReg 2013-12-01
50 schema:description The analysis of genome-wide genetic association studies generally starts with univariate statistical tests of each single-nucleotide polymorphism. The standard approach is the Cochran-Armitage trend test or its logistic regression equivalent although this approach can lose considerable power if the underlying genetic model is not additive. An alternative is the MAX test, which is robust against the three basic modes of inheritance. Here, the asymptotic distribution of the MAX test is derived using the generalized linear model together with the Delta method and multiple contrasts. The approach is applicable to binary, quantitative, and survival traits. It may be used for unrelated individuals, family-based studies, and matched pairs. The approach provides point and interval effect estimates and allows selecting the most plausible genetic model using the minimum P-value. R code is provided. A Monte-Carlo simulation study shows that the asymptotic MAX test framework meets type I error levels well, has good power, and good model selection properties for minor allele frequencies ≥0.3. Pearson's χ(2)-test is superior for lower minor allele frequencies with low frequencies for the rare homozygous genotype. In these cases, the model selection procedure should be used with caution. The use of the MAX test is illustrated by reanalyzing findings from seven genome-wide association studies including case-control, matched pairs, and quantitative trait data.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N32d69fdf5887431ab9909e700001b7f4
55 Nf15c3d72517342cabbc138b6b05f4f7e
56 sg:journal.1103410
57 schema:name A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model
58 schema:pagination 1442
59 schema:productId N6da504615cf14a43b7c98f8eea0afa3c
60 N7db0ff1da0974924992a95f38cbff97b
61 N901e285bbcdc45f0b9590d1098f09c24
62 Nadc40f784f9d455e853f4cbb95d1499f
63 Nf52538ea972648a395292e7324d5f435
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015260626
65 https://doi.org/10.1038/ejhg.2013.62
66 schema:sdDatePublished 2019-04-10T13:01
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nd869bf75535549bdab91b0eef2a06d4e
69 schema:url https://www.nature.com/articles/ejhg201362
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N1cf0f5cae0ff4dfe86110215bde94f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N32d69fdf5887431ab9909e700001b7f4 schema:volumeNumber 21
77 rdf:type schema:PublicationVolume
78 N3a8cb6597ea5427cbd36215a6ec3b94b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Genome-Wide Association Study
80 rdf:type schema:DefinedTerm
81 N404b328945f142c385bb83c6489b1f2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Polymorphism, Single Nucleotide
83 rdf:type schema:DefinedTerm
84 N44b8fc758f6f465184bae156b4cc8b72 rdf:first sg:person.0640117311.56
85 rdf:rest Na63724856f3b4b1cab0ef3dbc4e53d61
86 N6959b8cc4e2e4f6297a9372d9979f7d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Genetic Predisposition to Disease
88 rdf:type schema:DefinedTerm
89 N6da504615cf14a43b7c98f8eea0afa3c schema:name doi
90 schema:value 10.1038/ejhg.2013.62
91 rdf:type schema:PropertyValue
92 N7db0ff1da0974924992a95f38cbff97b schema:name pubmed_id
93 schema:value 23572026
94 rdf:type schema:PropertyValue
95 N8628bd15544d477da586069c8bc17d00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Logistic Models
97 rdf:type schema:DefinedTerm
98 N901e285bbcdc45f0b9590d1098f09c24 schema:name dimensions_id
99 schema:value pub.1015260626
100 rdf:type schema:PropertyValue
101 N9396e84376244651b1b36e224d8c272e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Computer Simulation
103 rdf:type schema:DefinedTerm
104 N988c28d0ba2d4b72b73880c496db90b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Gene Frequency
106 rdf:type schema:DefinedTerm
107 N9b024e34969047e8a357f5205ceff4c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Case-Control Studies
109 rdf:type schema:DefinedTerm
110 Na63724856f3b4b1cab0ef3dbc4e53d61 rdf:first sg:person.01207532423.34
111 rdf:rest rdf:nil
112 Nadc40f784f9d455e853f4cbb95d1499f schema:name readcube_id
113 schema:value 48b575e6dce89047071358863b851b597b9e1d00bd2ee4071164ab0ed3b09355
114 rdf:type schema:PropertyValue
115 Nbdf2b6f5b169482aa589231fd9b8f1e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Models, Genetic
117 rdf:type schema:DefinedTerm
118 Ncea92eae42a544babb21c20cf9f1b514 rdf:first sg:person.01163057741.44
119 rdf:rest Ne451112bd34f4802a3e814c0bb4491d0
120 Nd869bf75535549bdab91b0eef2a06d4e schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Ne451112bd34f4802a3e814c0bb4491d0 rdf:first sg:person.0636132126.24
123 rdf:rest N44b8fc758f6f465184bae156b4cc8b72
124 Ne55c32a1c98c47c29035d0927d948fb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Linear Models
126 rdf:type schema:DefinedTerm
127 Nf15c3d72517342cabbc138b6b05f4f7e schema:issueNumber 12
128 rdf:type schema:PublicationIssue
129 Nf52538ea972648a395292e7324d5f435 schema:name nlm_unique_id
130 schema:value 9302235
131 rdf:type schema:PropertyValue
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
136 schema:name Genetics
137 rdf:type schema:DefinedTerm
138 sg:grant.2581587 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2013.62
139 rdf:type schema:MonetaryGrant
140 sg:grant.2775947 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2013.62
141 rdf:type schema:MonetaryGrant
142 sg:grant.3625736 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2013.62
143 rdf:type schema:MonetaryGrant
144 sg:grant.3626430 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2013.62
145 rdf:type schema:MonetaryGrant
146 sg:grant.3788712 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2013.62
147 rdf:type schema:MonetaryGrant
148 sg:journal.1103410 schema:issn 1018-4813
149 1476-5438
150 schema:name European Journal of Human Genetics
151 rdf:type schema:Periodical
152 sg:person.01163057741.44 schema:affiliation https://www.grid.ac/institutes/grid.412468.d
153 schema:familyName Loley
154 schema:givenName Christina
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163057741.44
156 rdf:type schema:Person
157 sg:person.01207532423.34 schema:affiliation https://www.grid.ac/institutes/grid.4562.5
158 schema:familyName Ziegler
159 schema:givenName Andreas
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207532423.34
161 rdf:type schema:Person
162 sg:person.0636132126.24 schema:affiliation https://www.grid.ac/institutes/grid.4562.5
163 schema:familyName König
164 schema:givenName Inke R
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636132126.24
166 rdf:type schema:Person
167 sg:person.0640117311.56 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
168 schema:familyName Hothorn
169 schema:givenName Ludwig
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640117311.56
171 rdf:type schema:Person
172 sg:pub.10.1007/s00439-008-0514-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013967397
173 https://doi.org/10.1007/s00439-008-0514-8
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10519-011-9450-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040335901
176 https://doi.org/10.1007/s10519-011-9450-9
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
179 https://doi.org/10.1038/nature05911
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature11334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021651350
182 https://doi.org/10.1038/nature11334
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/ng.388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035743740
185 https://doi.org/10.1038/ng.388
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nrg2615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021006418
188 https://doi.org/10.1038/nrg2615
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2156-11-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048480538
191 https://doi.org/10.1186/1471-2156-11-91
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/bimj.200800203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035994492
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/gepi.20299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027495086
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/gepi.20455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024376174
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/gepi.20510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050935305
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/gepi.20524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051113614
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/gepi.20620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011492809
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/sim.2278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029392680
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1002/sim.3759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045054651
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.csda.2009.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014376336
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1046/j.1469-1809.2002.00104.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020131509
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1046/j.1529-8817.2003.00065.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050629593
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1086/338007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058637652
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1086/430507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058716585
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/ije/dyi169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030009210
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/ije/dyi183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041266836
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/j.1469-1809.2008.00437.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025427460
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/j.1469-1809.2008.00500.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032031757
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/j.1469-1809.2009.00506.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040972360
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/j.1541-0420.2009.01185.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028831832
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1159/000064976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006858010
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1159/000323768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038611771
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1159/000334085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018243423
236 rdf:type schema:CreativeWork
237 https://doi.org/10.18637/jss.v033.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672496
238 rdf:type schema:CreativeWork
239 https://doi.org/10.18637/jss.v033.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672503
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2202/1544-6115.1408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048704328
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2307/2533494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978889
244 rdf:type schema:CreativeWork
245 https://doi.org/10.4310/sii.2009.v2.n2.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072464076
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.412468.d schema:alternateName University Hospital Schleswig-Holstein
248 schema:name Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
249 Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.4562.5 schema:alternateName University of Lübeck
252 schema:name Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
255 schema:name Institut für Biostatistik, Leibniz Universität Hannover, Hannover, Germany
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...