Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Alan Weder, Aravinda Chakravarti, Ashley A O'Connor, Georg B Ehret, Richard S Cooper

ABSTRACT

Essential hypertension is a major cardiovascular risk factor and a large proportion of this risk is genetic. Identification of genomic regions consistently associated with hypertension has been difficult in association studies to date as this requires large sample sizes.We previously published a large genome-wide linkage scan in Americans of African (AA) and European (EA) descent in the GenNet Network of the Family Blood Pressure Program (FBPP). A highly significant linkage peak was identified on chr1q spanning a region of 100 cM. In this study, we genotyped 1569 SNPs under this linkage peak in 2379 individuals to identify whether common genetic variants were associated with blood pressure (BP) at this locus.Our analysis, using two different family-based association tests, provides suggestive evidence (P< or =2 x 10(-5)) for a collection of single nucleotide polymorphisms (SNPs) associated with BP. In EAs, using diastolic BP as a quantitative phenotype, three variants located in or near the GPA33, CD247, and F5 genes, emerge as our top hits; for systolic BP, variants in GPA33, CD247, and REN are our best findings. No variant in AAs came close to suggestive evidence after multiple-test corrections (P> or =8 x 10(-5)). In summary, we show that systematic follow-up of a linkage signal can help discover candidate variants for essential hypertension that require a follow-up in yet larger samples. The failure to identify common variants is either because of low statistical power or the existence of rare coding variants in specific families or both, which require additional studies to clarify. More... »

PAGES

1650

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ejhg.2009.94

DOI

http://dx.doi.org/10.1038/ejhg.2009.94

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033791358

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19536175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "American Native Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Human, Pair 1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "European Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weder", 
        "givenName": "Alan", 
        "id": "sg:person.0610630525.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610630525.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Center for Complex Diseases Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakravarti", 
        "givenName": "Aravinda", 
        "id": "sg:person.01221734637.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Center for Complex Diseases Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O'Connor", 
        "givenName": "Ashley A", 
        "id": "sg:person.01052653111.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052653111.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "Center for Complex Diseases Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
            "Cardiology Center, Geneva University Hospital, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ehret", 
        "givenName": "Georg B", 
        "id": "sg:person.01351041437.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351041437.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Loyola University Chicago", 
          "id": "https://www.grid.ac/institutes/grid.164971.c", 
          "name": [
            "Department of Preventive Medicine and Epidemiology, Loyola University Stritch School of Medicine, Maywood, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cooper", 
        "givenName": "Richard S", 
        "id": "sg:person.016465422152.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016465422152.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)68770-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006956756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259745", 
          "https://doi.org/10.1038/sj.ejhg.5201528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259745", 
          "https://doi.org/10.1038/sj.ejhg.5201528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259745", 
          "https://doi.org/10.1038/sj.ejhg.5201528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008728252", 
          "https://doi.org/10.1038/nbt821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008728252", 
          "https://doi.org/10.1038/nbt821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.2.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013189896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7061(02)03246-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015557441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.2.469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018940003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)05381-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018979750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2141.2000.02502.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025897596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.106.085563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026040944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.106.085563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026040944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3185605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029969824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.103.9.1245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033322070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2008.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034268960", 
          "https://doi.org/10.1038/ejhg.2008.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7061(99)00140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036577814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041343500", 
          "https://doi.org/10.1038/ng786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041343500", 
          "https://doi.org/10.1038/ng786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hy1201.100415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042735011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043799311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043799311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051134045", 
          "https://doi.org/10.1038/nature06258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053341882", 
          "https://doi.org/10.1038/nrd2550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2141.2000.02502.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056733443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/510918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058787568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3278377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062603651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajh/7.7.7s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082577777"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "Essential hypertension is a major cardiovascular risk factor and a large proportion of this risk is genetic. Identification of genomic regions consistently associated with hypertension has been difficult in association studies to date as this requires large sample sizes.We previously published a large genome-wide linkage scan in Americans of African (AA) and European (EA) descent in the GenNet Network of the Family Blood Pressure Program (FBPP). A highly significant linkage peak was identified on chr1q spanning a region of 100 cM. In this study, we genotyped 1569 SNPs under this linkage peak in 2379 individuals to identify whether common genetic variants were associated with blood pressure (BP) at this locus.Our analysis, using two different family-based association tests, provides suggestive evidence (P< or =2 x 10(-5)) for a collection of single nucleotide polymorphisms (SNPs) associated with BP. In EAs, using diastolic BP as a quantitative phenotype, three variants located in or near the GPA33, CD247, and F5 genes, emerge as our top hits; for systolic BP, variants in GPA33, CD247, and REN are our best findings. No variant in AAs came close to suggestive evidence after multiple-test corrections (P> or =8 x 10(-5)). In summary, we show that systematic follow-up of a linkage signal can help discover candidate variants for essential hypertension that require a follow-up in yet larger samples. The failure to identify common variants is either because of low statistical power or the existence of rare coding variants in specific families or both, which require additional studies to clarify.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ejhg.2009.94", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691527", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study", 
    "pagination": "1650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a0f8b2e56ca842f9039201e34e5f2fce598a0f9feb1a1fa8c24c50504a378a8a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19536175"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9302235"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ejhg.2009.94"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033791358"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ejhg.2009.94", 
      "https://app.dimensions.ai/details/publication/pub.1033791358"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64082_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ejhg200994"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2009.94'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2009.94'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2009.94'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ejhg.2009.94'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      69 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ejhg.2009.94 schema:about N0b29d1ef9a314269958cbf929f3483b4
2 N169781e087a44bb6860ab147a8b3733a
3 N34c7c888dcd14514999183d6414c5fb8
4 N370ca6bf8187430ba7bcc5c35eddecb1
5 N47f4b16a5f414c8790ee177d2ede4129
6 N58e6109466344711b0b1cb75c5ebfaa9
7 N90a5eb74e9a942ee9b8e5b2730f351e5
8 N93eb78891159489a84ed8da82ff41793
9 Na026c35cee0e4734b183b96c52d7923c
10 Naffdc1ae4c974da398ca6a47c27e0494
11 Nc0e4ad633e0040399ad02c3d92b7f4d2
12 Nd610629660034d26b2017c639962771b
13 Nddcdd311c196457595dae88596ad09f6
14 Nf201282cae8e4cb1a12ee4453bbd4297
15 Nf2632fa99d234a9e951d43994cc14b47
16 Nf2d5a4803c1d4549aa998d1a52375844
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N9981067cad8547d59da87ac679d7a069
20 schema:citation sg:pub.10.1038/ejhg.2008.102
21 sg:pub.10.1038/nature06258
22 sg:pub.10.1038/nbt821
23 sg:pub.10.1038/ng786
24 sg:pub.10.1038/nrd2550
25 sg:pub.10.1038/sj.ejhg.5201528
26 https://doi.org/10.1002/sim.2165
27 https://doi.org/10.1016/s0140-6736(06)68770-9
28 https://doi.org/10.1016/s0140-6736(97)05381-6
29 https://doi.org/10.1016/s0895-7061(02)03246-6
30 https://doi.org/10.1016/s0895-7061(99)00140-5
31 https://doi.org/10.1046/j.1365-2141.2000.02502.x
32 https://doi.org/10.1073/pnas.94.2.469
33 https://doi.org/10.1086/510918
34 https://doi.org/10.1086/519795
35 https://doi.org/10.1093/ajh/7.7.7s
36 https://doi.org/10.1093/bioinformatics/bth457
37 https://doi.org/10.1093/biostatistics/4.2.195
38 https://doi.org/10.1101/gr.3185605
39 https://doi.org/10.1111/j.1365-2141.2000.02502.x
40 https://doi.org/10.1126/science.3278377
41 https://doi.org/10.1161/01.cir.103.9.1245
42 https://doi.org/10.1161/hy1201.100415
43 https://doi.org/10.1161/hypertensionaha.106.085563
44 schema:datePublished 2009-12
45 schema:datePublishedReg 2009-12-01
46 schema:description Essential hypertension is a major cardiovascular risk factor and a large proportion of this risk is genetic. Identification of genomic regions consistently associated with hypertension has been difficult in association studies to date as this requires large sample sizes.We previously published a large genome-wide linkage scan in Americans of African (AA) and European (EA) descent in the GenNet Network of the Family Blood Pressure Program (FBPP). A highly significant linkage peak was identified on chr1q spanning a region of 100 cM. In this study, we genotyped 1569 SNPs under this linkage peak in 2379 individuals to identify whether common genetic variants were associated with blood pressure (BP) at this locus.Our analysis, using two different family-based association tests, provides suggestive evidence (P< or =2 x 10(-5)) for a collection of single nucleotide polymorphisms (SNPs) associated with BP. In EAs, using diastolic BP as a quantitative phenotype, three variants located in or near the GPA33, CD247, and F5 genes, emerge as our top hits; for systolic BP, variants in GPA33, CD247, and REN are our best findings. No variant in AAs came close to suggestive evidence after multiple-test corrections (P> or =8 x 10(-5)). In summary, we show that systematic follow-up of a linkage signal can help discover candidate variants for essential hypertension that require a follow-up in yet larger samples. The failure to identify common variants is either because of low statistical power or the existence of rare coding variants in specific families or both, which require additional studies to clarify.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N0f5e9051d3084621876708e6769a9404
51 N7ee553be2529442797c78d9fc2926ff5
52 sg:journal.1103410
53 schema:name Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study
54 schema:pagination 1650
55 schema:productId N10b477286f3e491497cdb4313b493b07
56 N958a75709f82401b863d4ab6978e8be6
57 N9aa881a1631445b1ba9664f1a282e21e
58 Need47f45506643f5a483ed8a72370fdd
59 Nf02dc751d4354c589818437c53bb0f68
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033791358
61 https://doi.org/10.1038/ejhg.2009.94
62 schema:sdDatePublished 2019-04-11T09:22
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ne02bdf36720549b796ca31d984547831
65 schema:url https://www.nature.com/articles/ejhg200994
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0b29d1ef9a314269958cbf929f3483b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Quantitative Trait Loci
71 rdf:type schema:DefinedTerm
72 N0c5859483d2f40b186fa0eafb5a42d80 rdf:first sg:person.01221734637.59
73 rdf:rest Nbedcb19c526a408897b6a79a9ad8d9ac
74 N0f5e9051d3084621876708e6769a9404 schema:volumeNumber 17
75 rdf:type schema:PublicationVolume
76 N10b477286f3e491497cdb4313b493b07 schema:name pubmed_id
77 schema:value 19536175
78 rdf:type schema:PropertyValue
79 N169781e087a44bb6860ab147a8b3733a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name American Native Continental Ancestry Group
81 rdf:type schema:DefinedTerm
82 N34c7c888dcd14514999183d6414c5fb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Adult
84 rdf:type schema:DefinedTerm
85 N370ca6bf8187430ba7bcc5c35eddecb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Hypertension
87 rdf:type schema:DefinedTerm
88 N47f4b16a5f414c8790ee177d2ede4129 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Middle Aged
90 rdf:type schema:DefinedTerm
91 N58e6109466344711b0b1cb75c5ebfaa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Genetic Linkage
93 rdf:type schema:DefinedTerm
94 N7ee553be2529442797c78d9fc2926ff5 schema:issueNumber 12
95 rdf:type schema:PublicationIssue
96 N90a5eb74e9a942ee9b8e5b2730f351e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Adolescent
98 rdf:type schema:DefinedTerm
99 N93eb78891159489a84ed8da82ff41793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name European Continental Ancestry Group
101 rdf:type schema:DefinedTerm
102 N958a75709f82401b863d4ab6978e8be6 schema:name dimensions_id
103 schema:value pub.1033791358
104 rdf:type schema:PropertyValue
105 N9981067cad8547d59da87ac679d7a069 rdf:first sg:person.0610630525.42
106 rdf:rest N0c5859483d2f40b186fa0eafb5a42d80
107 N9aa881a1631445b1ba9664f1a282e21e schema:name readcube_id
108 schema:value a0f8b2e56ca842f9039201e34e5f2fce598a0f9feb1a1fa8c24c50504a378a8a
109 rdf:type schema:PropertyValue
110 Na026c35cee0e4734b183b96c52d7923c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Chromosomes, Human, Pair 1
112 rdf:type schema:DefinedTerm
113 Na124067137374d75a93ab94f9d5fe563 rdf:first sg:person.01351041437.40
114 rdf:rest Ndb9720d47c414280a3269f2fd39e0dba
115 Naffdc1ae4c974da398ca6a47c27e0494 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Male
117 rdf:type schema:DefinedTerm
118 Nbedcb19c526a408897b6a79a9ad8d9ac rdf:first sg:person.01052653111.93
119 rdf:rest Na124067137374d75a93ab94f9d5fe563
120 Nc0e4ad633e0040399ad02c3d92b7f4d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Quality Control
122 rdf:type schema:DefinedTerm
123 Nd610629660034d26b2017c639962771b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Genetic Predisposition to Disease
125 rdf:type schema:DefinedTerm
126 Ndb9720d47c414280a3269f2fd39e0dba rdf:first sg:person.016465422152.22
127 rdf:rest rdf:nil
128 Nddcdd311c196457595dae88596ad09f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Phenotype
130 rdf:type schema:DefinedTerm
131 Ne02bdf36720549b796ca31d984547831 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Need47f45506643f5a483ed8a72370fdd schema:name doi
134 schema:value 10.1038/ejhg.2009.94
135 rdf:type schema:PropertyValue
136 Nf02dc751d4354c589818437c53bb0f68 schema:name nlm_unique_id
137 schema:value 9302235
138 rdf:type schema:PropertyValue
139 Nf201282cae8e4cb1a12ee4453bbd4297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Female
141 rdf:type schema:DefinedTerm
142 Nf2632fa99d234a9e951d43994cc14b47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Young Adult
144 rdf:type schema:DefinedTerm
145 Nf2d5a4803c1d4549aa998d1a52375844 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Humans
147 rdf:type schema:DefinedTerm
148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biological Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
152 schema:name Genetics
153 rdf:type schema:DefinedTerm
154 sg:grant.2691527 http://pending.schema.org/fundedItem sg:pub.10.1038/ejhg.2009.94
155 rdf:type schema:MonetaryGrant
156 sg:journal.1103410 schema:issn 1018-4813
157 1476-5438
158 schema:name European Journal of Human Genetics
159 rdf:type schema:Periodical
160 sg:person.01052653111.93 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
161 schema:familyName O'Connor
162 schema:givenName Ashley A
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052653111.93
164 rdf:type schema:Person
165 sg:person.01221734637.59 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
166 schema:familyName Chakravarti
167 schema:givenName Aravinda
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221734637.59
169 rdf:type schema:Person
170 sg:person.01351041437.40 schema:affiliation https://www.grid.ac/institutes/grid.150338.c
171 schema:familyName Ehret
172 schema:givenName Georg B
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351041437.40
174 rdf:type schema:Person
175 sg:person.016465422152.22 schema:affiliation https://www.grid.ac/institutes/grid.164971.c
176 schema:familyName Cooper
177 schema:givenName Richard S
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016465422152.22
179 rdf:type schema:Person
180 sg:person.0610630525.42 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
181 schema:familyName Weder
182 schema:givenName Alan
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610630525.42
184 rdf:type schema:Person
185 sg:pub.10.1038/ejhg.2008.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034268960
186 https://doi.org/10.1038/ejhg.2008.102
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
189 https://doi.org/10.1038/nature06258
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nbt821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008728252
192 https://doi.org/10.1038/nbt821
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/ng786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041343500
195 https://doi.org/10.1038/ng786
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nrd2550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053341882
198 https://doi.org/10.1038/nrd2550
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/sj.ejhg.5201528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008259745
201 https://doi.org/10.1038/sj.ejhg.5201528
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/sim.2165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043799311
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0140-6736(06)68770-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006956756
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0140-6736(97)05381-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018979750
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0895-7061(02)03246-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015557441
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0895-7061(99)00140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036577814
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1046/j.1365-2141.2000.02502.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056733443
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.94.2.469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018940003
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1086/510918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058787568
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/ajh/7.7.7s schema:sameAs https://app.dimensions.ai/details/publication/pub.1082577777
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/biostatistics/4.2.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013189896
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1101/gr.3185605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029969824
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/j.1365-2141.2000.02502.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025897596
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.3278377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062603651
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1161/01.cir.103.9.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033322070
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1161/hy1201.100415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042735011
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1161/hypertensionaha.106.085563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026040944
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.150338.c schema:alternateName University Hospital of Geneva
240 schema:name Cardiology Center, Geneva University Hospital, Geneva, Switzerland
241 Center for Complex Diseases Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.164971.c schema:alternateName Loyola University Chicago
244 schema:name Department of Preventive Medicine and Epidemiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
247 schema:name Center for Complex Diseases Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
250 schema:name Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...