Comparison of high-resolution peripheral quantitative computerized tomography with dual-energy X-ray absorptiometry for measuring bone mineral density View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

E Colt, M Akram, F X Pi Sunyer

ABSTRACT

BACKGROUND/OBJECTIVES: The objective of this study was to compare the measurement of areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) with the measurement of volumetric bone mineral density (vBMD) by high-resolution peripheral computerized tomography (HR-pQCT) in subjects with a wide range of body mass indices (BMI). SUBJECTS/METHODS: We scanned the arms and legs of 49 premenopausal women, aged 21-45 years, with BMI from 18.5 to 46.5, by HR-pQCT and found that there was a nonsignificant change in vBMD associated with increased BMI, whereas aBMD (DXA) was associated with a positive significant increase. HR-pQCT scans a slice at the extremity of the tibia and radius, whereas DXA scans the entire leg and arm. RESULTS: The correlation coefficients (r) of BMD (DXA) of the legs with BMI were 0.552, P<0.001, with %fat it was 0.378, P<0.01 and with W it was 0.633, P<0.001. The r of BMD (DXA) of the arms with BMI was 0.804, P<0.001, with %fat it was 0.599, P<0.001 and with W it was 0.831, P<0.001, whereas the r of the average bone density (D100) of legs and arms measured by HR-pQCT with BMI, W and %fat were not significant. CONCLUSIONS: Although HR-pQCT and DXA scan different parts of the bone, the high r of BMD with BMI and low r of bone density measured by HR-pQCT with BMI suggest that BMD measured by DXA is artifactually increased in the presence of obesity. More... »

PAGES

778-781

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ejcn.2016.178

DOI

http://dx.doi.org/10.1038/ejcn.2016.178

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008872133

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27759063


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Absorptiometry, Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Height", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Premenopause", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radius", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tibia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St. Luke's-Roosevelt Hospital Center", 
          "id": "https://www.grid.ac/institutes/grid.240873.a", 
          "name": [
            "Obesity Research Center, Columbia University and St Luke\u2019s-Roosevelt Hospital, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Colt", 
        "givenName": "E", 
        "id": "sg:person.01370404364.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370404364.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Luke's-Roosevelt Hospital Center", 
          "id": "https://www.grid.ac/institutes/grid.240873.a", 
          "name": [
            "Obesity Research Center, Columbia University and St Luke\u2019s-Roosevelt Hospital, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akram", 
        "givenName": "M", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Luke's-Roosevelt Hospital Center", 
          "id": "https://www.grid.ac/institutes/grid.240873.a", 
          "name": [
            "Obesity Research Center, Columbia University and St Luke\u2019s-Roosevelt Hospital, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sunyer", 
        "givenName": "F X Pi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bone.2015.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020066901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2011.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027444295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1359/jbmr.2003.18.6.1020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036203338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00007256-200535090-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038176305", 
          "https://doi.org/10.2165/00007256-200535090-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00007256-200535090-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038176305", 
          "https://doi.org/10.2165/00007256-200535090-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077115380", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078348205", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078364076", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "BACKGROUND/OBJECTIVES: The objective of this study was to compare the measurement of areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) with the measurement of volumetric bone mineral density (vBMD) by high-resolution peripheral computerized tomography (HR-pQCT) in subjects with a wide range of body mass indices (BMI).\nSUBJECTS/METHODS: We scanned the arms and legs of 49 premenopausal women, aged 21-45 years, with BMI from 18.5 to 46.5, by HR-pQCT and found that there was a nonsignificant change in vBMD associated with increased BMI, whereas aBMD (DXA) was associated with a positive significant increase. HR-pQCT scans a slice at the extremity of the tibia and radius, whereas DXA scans the entire leg and arm.\nRESULTS: The correlation coefficients (r) of BMD (DXA) of the legs with BMI were 0.552, P<0.001, with %fat it was 0.378, P<0.01 and with W it was 0.633, P<0.001. The r of BMD (DXA) of the arms with BMI was 0.804, P<0.001, with %fat it was 0.599, P<0.001 and with W it was 0.831, P<0.001, whereas the r of the average bone density (D100) of legs and arms measured by HR-pQCT with BMI, W and %fat were not significant.\nCONCLUSIONS: Although HR-pQCT and DXA scan different parts of the bone, the high r of BMD with BMI and low r of bone density measured by HR-pQCT with BMI suggest that BMD measured by DXA is artifactually increased in the presence of obesity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ejcn.2016.178", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438976", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Comparison of high-resolution peripheral quantitative computerized tomography with dual-energy X-ray absorptiometry for measuring bone mineral density", 
    "pagination": "778-781", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a44eedb15c19db377ced172cd836a4296c51e05d93eb51f63003b5dbe587bb4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27759063"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8804070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ejcn.2016.178"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008872133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ejcn.2016.178", 
      "https://app.dimensions.ai/details/publication/pub.1008872133"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ejcn/journal/v71/n6/full/ejcn2016178a.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2016.178'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2016.178'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2016.178'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2016.178'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      51 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ejcn.2016.178 schema:about N188a511ded404298883794b27229ec9c
2 N2bb8e224169744e6acf968deb7032b14
3 N35813c71562142469290611bf2023ad2
4 N3ea74c200a844c4c9ac8fdbdeee87b8e
5 N7557d2422ba04d30ab144b3b40af625d
6 N799ac75d4c9b43f89cda768a34744b94
7 N7bc2eb68e92542a6bb09ac26fa9bff26
8 N88ad038581cc4bf39e57c997a2665bed
9 N8e6548a0262f42089d62c8aae24fb824
10 N9c15f448b8bb4e8a9b66b9f761fa08ca
11 Nd7246e6cd4344f5baddb745fdd5f7a75
12 Nded35ef6875946bda37bb4da70596d04
13 Ne8fa0dae5bb54ed2844139836fa244d9
14 Nf267d68f60b64093bbb76f6c55c79498
15 Nf7458e9587ba4e7cb78bcfecb618d635
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author Nd61a95a9a9f748f999a4392d9394859e
19 schema:citation sg:pub.10.2165/00007256-200535090-00004
20 https://app.dimensions.ai/details/publication/pub.1077115380
21 https://app.dimensions.ai/details/publication/pub.1078348205
22 https://app.dimensions.ai/details/publication/pub.1078364076
23 https://doi.org/10.1016/j.bone.2015.06.006
24 https://doi.org/10.1038/oby.2011.40
25 https://doi.org/10.1359/jbmr.2003.18.6.1020
26 schema:datePublished 2017-06
27 schema:datePublishedReg 2017-06-01
28 schema:description BACKGROUND/OBJECTIVES: The objective of this study was to compare the measurement of areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) with the measurement of volumetric bone mineral density (vBMD) by high-resolution peripheral computerized tomography (HR-pQCT) in subjects with a wide range of body mass indices (BMI). SUBJECTS/METHODS: We scanned the arms and legs of 49 premenopausal women, aged 21-45 years, with BMI from 18.5 to 46.5, by HR-pQCT and found that there was a nonsignificant change in vBMD associated with increased BMI, whereas aBMD (DXA) was associated with a positive significant increase. HR-pQCT scans a slice at the extremity of the tibia and radius, whereas DXA scans the entire leg and arm. RESULTS: The correlation coefficients (r) of BMD (DXA) of the legs with BMI were 0.552, P<0.001, with %fat it was 0.378, P<0.01 and with W it was 0.633, P<0.001. The r of BMD (DXA) of the arms with BMI was 0.804, P<0.001, with %fat it was 0.599, P<0.001 and with W it was 0.831, P<0.001, whereas the r of the average bone density (D100) of legs and arms measured by HR-pQCT with BMI, W and %fat were not significant. CONCLUSIONS: Although HR-pQCT and DXA scan different parts of the bone, the high r of BMD with BMI and low r of bone density measured by HR-pQCT with BMI suggest that BMD measured by DXA is artifactually increased in the presence of obesity.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N9f6f197aaa2f4e18b4a8c49fff5dd9a0
33 Ncad7a7a77c3540efa66f5e00d3b5a968
34 sg:journal.1097936
35 schema:name Comparison of high-resolution peripheral quantitative computerized tomography with dual-energy X-ray absorptiometry for measuring bone mineral density
36 schema:pagination 778-781
37 schema:productId N10525ae00e5447b2b9095b6e9649caf5
38 N3d0c5b0ac83a46768114595deced7d4b
39 N4818a0af94124026b091c150e3e16256
40 N4f289fce802e45058fa38637f91bdbac
41 Nf50afb9a65d34673b13129eb75fb6750
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008872133
43 https://doi.org/10.1038/ejcn.2016.178
44 schema:sdDatePublished 2019-04-11T01:14
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N47b84ff383494b2ea38447d97df57a00
47 schema:url http://www.nature.com/ejcn/journal/v71/n6/full/ejcn2016178a.html
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N10525ae00e5447b2b9095b6e9649caf5 schema:name readcube_id
52 schema:value 2a44eedb15c19db377ced172cd836a4296c51e05d93eb51f63003b5dbe587bb4
53 rdf:type schema:PropertyValue
54 N188a511ded404298883794b27229ec9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Tibia
56 rdf:type schema:DefinedTerm
57 N2bb8e224169744e6acf968deb7032b14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Middle Aged
59 rdf:type schema:DefinedTerm
60 N35813c71562142469290611bf2023ad2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Adult
62 rdf:type schema:DefinedTerm
63 N3d0c5b0ac83a46768114595deced7d4b schema:name dimensions_id
64 schema:value pub.1008872133
65 rdf:type schema:PropertyValue
66 N3e6a0132a06646bbb2b4f7ca808ab5dc schema:affiliation https://www.grid.ac/institutes/grid.240873.a
67 schema:familyName Akram
68 schema:givenName M
69 rdf:type schema:Person
70 N3ea74c200a844c4c9ac8fdbdeee87b8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Adolescent
72 rdf:type schema:DefinedTerm
73 N47b84ff383494b2ea38447d97df57a00 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N4818a0af94124026b091c150e3e16256 schema:name nlm_unique_id
76 schema:value 8804070
77 rdf:type schema:PropertyValue
78 N4f289fce802e45058fa38637f91bdbac schema:name doi
79 schema:value 10.1038/ejcn.2016.178
80 rdf:type schema:PropertyValue
81 N6653be2e2cdf4610bb5c9a04967673f7 rdf:first N3e6a0132a06646bbb2b4f7ca808ab5dc
82 rdf:rest Ndb8a98bb23c34a0ca53f3e1b9c46f680
83 N7557d2422ba04d30ab144b3b40af625d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N799ac75d4c9b43f89cda768a34744b94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Radius
88 rdf:type schema:DefinedTerm
89 N7bc2eb68e92542a6bb09ac26fa9bff26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Absorptiometry, Photon
91 rdf:type schema:DefinedTerm
92 N88ad038581cc4bf39e57c997a2665bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Young Adult
94 rdf:type schema:DefinedTerm
95 N89af8e0e55214dddb37951dccf0560bf schema:affiliation https://www.grid.ac/institutes/grid.240873.a
96 schema:familyName Sunyer
97 schema:givenName F X Pi
98 rdf:type schema:Person
99 N8e6548a0262f42089d62c8aae24fb824 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Body Mass Index
101 rdf:type schema:DefinedTerm
102 N9c15f448b8bb4e8a9b66b9f761fa08ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Body Height
104 rdf:type schema:DefinedTerm
105 N9f6f197aaa2f4e18b4a8c49fff5dd9a0 schema:issueNumber 6
106 rdf:type schema:PublicationIssue
107 Ncad7a7a77c3540efa66f5e00d3b5a968 schema:volumeNumber 71
108 rdf:type schema:PublicationVolume
109 Nd61a95a9a9f748f999a4392d9394859e rdf:first sg:person.01370404364.02
110 rdf:rest N6653be2e2cdf4610bb5c9a04967673f7
111 Nd7246e6cd4344f5baddb745fdd5f7a75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Premenopause
113 rdf:type schema:DefinedTerm
114 Ndb8a98bb23c34a0ca53f3e1b9c46f680 rdf:first N89af8e0e55214dddb37951dccf0560bf
115 rdf:rest rdf:nil
116 Nded35ef6875946bda37bb4da70596d04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Tomography, X-Ray Computed
118 rdf:type schema:DefinedTerm
119 Ne8fa0dae5bb54ed2844139836fa244d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Body Weight
121 rdf:type schema:DefinedTerm
122 Nf267d68f60b64093bbb76f6c55c79498 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Bone Density
124 rdf:type schema:DefinedTerm
125 Nf50afb9a65d34673b13129eb75fb6750 schema:name pubmed_id
126 schema:value 27759063
127 rdf:type schema:PropertyValue
128 Nf7458e9587ba4e7cb78bcfecb618d635 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Female
130 rdf:type schema:DefinedTerm
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
135 schema:name Clinical Sciences
136 rdf:type schema:DefinedTerm
137 sg:grant.2438976 http://pending.schema.org/fundedItem sg:pub.10.1038/ejcn.2016.178
138 rdf:type schema:MonetaryGrant
139 sg:journal.1097936 schema:issn 0954-3007
140 1476-5640
141 schema:name European Journal of Clinical Nutrition
142 rdf:type schema:Periodical
143 sg:person.01370404364.02 schema:affiliation https://www.grid.ac/institutes/grid.240873.a
144 schema:familyName Colt
145 schema:givenName E
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370404364.02
147 rdf:type schema:Person
148 sg:pub.10.2165/00007256-200535090-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038176305
149 https://doi.org/10.2165/00007256-200535090-00004
150 rdf:type schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1077115380 schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1078348205 schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1078364076 schema:CreativeWork
154 https://doi.org/10.1016/j.bone.2015.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020066901
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1038/oby.2011.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027444295
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1359/jbmr.2003.18.6.1020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036203338
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.240873.a schema:alternateName St. Luke's-Roosevelt Hospital Center
161 schema:name Obesity Research Center, Columbia University and St Luke’s-Roosevelt Hospital, New York, NY, USA
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...