Dioxins, polychlorinated biphenyls, methyl mercury and omega-3 polyunsaturated fatty acids as biomarkers of fish consumption View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01-27

AUTHORS

A W Turunen, S Männistö, H Kiviranta, J Marniemi, A Jula, P Tiittanen, L Suominen-Taipale, T Vartiainen, P K Verkasalo

ABSTRACT

Background/Objectives:To assess biomarkers and frequency questions as measures of fish consumption.Subjects/Methods:Participants in the Fishermen substudy numbered 125 men and 139 women (aged 22–74), and in the Health 2000 substudy, 577 men and 712 women (aged 45–74) participated. The aim of the Fishermen study was to examine the overall health effect of fish consumption in a high-consumption population, whereas the aim of the Health 2000 substudy was to obtain in-depth information on cardiovascular diseases and diabetes. Fish consumption was measured by the same validated food frequency questionnaire (FFQ) in both the studies, with a further two separate frequency questions used in the Fishermen substudy. Dioxins, polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) (in the Fishermen substudy alone), and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) (in both studies) were analyzed from fasting serum/blood samples.Results:The Spearman's correlation coefficients between FFQ fish consumption and dioxins, PCBs, MeHg and omega-3 PUFAs were respectively 0.46, 0.48, 0.43 and 0.38 among the Fishermen substudy men, and 0.28, 0.36, 0.45 and 0.31 among women. Similar correlation coefficients were observed between FFQ fish consumption and serum omega-3 PUFAs in the Health 2000 substudy, and also between FFQ fish consumption and the frequency questions on fish consumption in the Fishermen substudy. According to multiple regression modeling and LMG metrics, the most important fish consumption biomarkers were dioxins and PCBs among the men and MeHg among the women.Conclusions:Environmental contaminants seemed to be slightly better fish consumption biomarkers than omega-3 PUFAs in the Baltic Sea area. The separate frequency questions measured fish consumption equally well when compared with the FFQ. More... »

PAGES

313-323

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ejcn.2009.147

DOI

http://dx.doi.org/10.1038/ejcn.2009.147

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007242701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20104234


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dioxins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids, Omega-3", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fishes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Contamination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylmercury Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polychlorinated Biphenyls", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seafood", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics, Nonparametric", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turunen", 
        "givenName": "A W", 
        "id": "sg:person.01102612040.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102612040.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e4nnist\u00f6", 
        "givenName": "S", 
        "id": "sg:person.01332060026.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332060026.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiviranta", 
        "givenName": "H", 
        "id": "sg:person.01371130433.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371130433.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marniemi", 
        "givenName": "J", 
        "id": "sg:person.0103473223.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103473223.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jula", 
        "givenName": "A", 
        "id": "sg:person.0722454465.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722454465.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiittanen", 
        "givenName": "P", 
        "id": "sg:person.01120622206.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120622206.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suominen-Taipale", 
        "givenName": "L", 
        "id": "sg:person.01041142034.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041142034.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vartiainen", 
        "givenName": "T", 
        "id": "sg:person.01030371373.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030371373.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verkasalo", 
        "givenName": "P K", 
        "id": "sg:person.01072452773.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072452773.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025467784", 
          "https://doi.org/10.1038/sj.ejcn.1601269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-009-0662-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017780250", 
          "https://doi.org/10.1007/s00439-009-0662-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00420-002-0400-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075268149", 
          "https://doi.org/10.1007/s00420-002-0400-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1600475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031829670", 
          "https://doi.org/10.1038/sj.ejcn.1600475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1602617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011203258", 
          "https://doi.org/10.1038/sj.ejcn.1602617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01-27", 
    "datePublishedReg": "2010-01-27", 
    "description": "Background/Objectives:To assess biomarkers and frequency questions as measures of fish consumption.Subjects/Methods:Participants in the Fishermen substudy numbered 125 men and 139 women (aged 22\u201374), and in the Health 2000 substudy, 577 men and 712 women (aged 45\u201374) participated. The aim of the Fishermen study was to examine the overall health effect of fish consumption in a high-consumption population, whereas the aim of the Health 2000 substudy was to obtain in-depth information on cardiovascular diseases and diabetes. Fish consumption was measured by the same validated food frequency questionnaire (FFQ) in both the studies, with a further two separate frequency questions used in the Fishermen substudy. Dioxins, polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) (in the Fishermen substudy alone), and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) (in both studies) were analyzed from fasting serum/blood samples.Results:The Spearman's correlation coefficients between FFQ fish consumption and dioxins, PCBs, MeHg and omega-3 PUFAs were respectively 0.46, 0.48, 0.43 and 0.38 among the Fishermen substudy men, and 0.28, 0.36, 0.45 and 0.31 among women. Similar correlation coefficients were observed between FFQ fish consumption and serum omega-3 PUFAs in the Health 2000 substudy, and also between FFQ fish consumption and the frequency questions on fish consumption in the Fishermen substudy. According to multiple regression modeling and LMG metrics, the most important fish consumption biomarkers were dioxins and PCBs among the men and MeHg among the women.Conclusions:Environmental contaminants seemed to be slightly better fish consumption biomarkers than omega-3 PUFAs in the Baltic Sea area. The separate frequency questions measured fish consumption equally well when compared with the FFQ.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ejcn.2009.147", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8839109", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "keywords": [
      "food frequency questionnaire", 
      "frequency questions", 
      "omega-3", 
      "fish consumption", 
      "overall health effects", 
      "frequency questionnaire", 
      "Spearman correlation coefficient", 
      "fatty acids", 
      "cardiovascular disease", 
      "substudy", 
      "blood samples", 
      "multiple regression modeling", 
      "health effects", 
      "biomarkers", 
      "women", 
      "regression modeling", 
      "men", 
      "PUFA", 
      "correlation coefficient", 
      "methyl mercury", 
      "diabetes", 
      "environmental contaminants", 
      "aim", 
      "disease", 
      "dioxins", 
      "similar correlation coefficients", 
      "study", 
      "questionnaire", 
      "MeHg", 
      "participants", 
      "acid", 
      "population", 
      "consumption", 
      "measures", 
      "effect", 
      "questions", 
      "biphenyls", 
      "samples", 
      "area", 
      "PCBs", 
      "mercury", 
      "information", 
      "contaminants", 
      "coefficient", 
      "depth information", 
      "metrics", 
      "modeling", 
      "Baltic Sea area", 
      "sea area", 
      "Fishermen substudy", 
      "Health 2000 substudy", 
      "Fishermen study", 
      "high-consumption population", 
      "separate frequency questions", 
      "serum/blood samples", 
      "FFQ fish consumption", 
      "Fishermen substudy men", 
      "substudy men", 
      "LMG metrics", 
      "important fish consumption biomarkers", 
      "fish consumption biomarkers", 
      "consumption biomarkers", 
      "better fish consumption biomarkers"
    ], 
    "name": "Dioxins, polychlorinated biphenyls, methyl mercury and omega-3 polyunsaturated fatty acids as biomarkers of fish consumption", 
    "pagination": "313-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007242701"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ejcn.2009.147"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20104234"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ejcn.2009.147", 
      "https://app.dimensions.ai/details/publication/pub.1007242701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ejcn.2009.147"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      22 PREDICATES      116 URIs      103 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ejcn.2009.147 schema:about N0b440b7ec8954ff186ee9ec81a30362e
2 N173db53d3cd74df9b0899e581a167491
3 N1f5d1de980c2402cb3787fd72c8d979c
4 N24d5277a25d84db98c0094a3aad6b920
5 N3512381638f045ffb029061b3829a776
6 N43935d0c58bf4d0a8d40a7eecd7d9ea3
7 N4a366c6c7a354f489b22c6fd635d3a8c
8 N4d119f32d496496f838e44bd0370369d
9 N526460640a2e4955b39968162b26937c
10 N573f9ab124184fd9b7e3c46a031a0339
11 N5ef9a6f03abf4285b14719f96d498572
12 N769f27fc89a840b9b412bec027eb0038
13 N92b87c5426964f2d9b66a81d4913bd80
14 Na1c3fb22668c4dbf95bfe3f97597b929
15 Na20d2f013353447c9266a4e52a19d21c
16 Nbb9337890e264f3daca323afe54641fe
17 Nbdfb3e011459427ba26ff002e1d27399
18 Ncd5db4776b6848d3812f774005768dd4
19 Ndab71f9339d14bb2aa5b0dc6e9414449
20 Ne4a01e9cf7a844abbaeb467ddbc29a84
21 Nf2fbafd74fc444bfbe4dd4e62a8621cd
22 Nf664027dabdd45e19c3b9f5e5dca13d3
23 anzsrc-for:11
24 anzsrc-for:1117
25 schema:author N877e88a9c48f4d73b0ade96153f6d679
26 schema:citation sg:pub.10.1007/s00420-002-0400-y
27 sg:pub.10.1007/s00439-009-0662-5
28 sg:pub.10.1038/sj.ejcn.1600475
29 sg:pub.10.1038/sj.ejcn.1601269
30 sg:pub.10.1038/sj.ejcn.1602617
31 schema:datePublished 2010-01-27
32 schema:datePublishedReg 2010-01-27
33 schema:description Background/Objectives:To assess biomarkers and frequency questions as measures of fish consumption.Subjects/Methods:Participants in the Fishermen substudy numbered 125 men and 139 women (aged 22–74), and in the Health 2000 substudy, 577 men and 712 women (aged 45–74) participated. The aim of the Fishermen study was to examine the overall health effect of fish consumption in a high-consumption population, whereas the aim of the Health 2000 substudy was to obtain in-depth information on cardiovascular diseases and diabetes. Fish consumption was measured by the same validated food frequency questionnaire (FFQ) in both the studies, with a further two separate frequency questions used in the Fishermen substudy. Dioxins, polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) (in the Fishermen substudy alone), and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) (in both studies) were analyzed from fasting serum/blood samples.Results:The Spearman's correlation coefficients between FFQ fish consumption and dioxins, PCBs, MeHg and omega-3 PUFAs were respectively 0.46, 0.48, 0.43 and 0.38 among the Fishermen substudy men, and 0.28, 0.36, 0.45 and 0.31 among women. Similar correlation coefficients were observed between FFQ fish consumption and serum omega-3 PUFAs in the Health 2000 substudy, and also between FFQ fish consumption and the frequency questions on fish consumption in the Fishermen substudy. According to multiple regression modeling and LMG metrics, the most important fish consumption biomarkers were dioxins and PCBs among the men and MeHg among the women.Conclusions:Environmental contaminants seemed to be slightly better fish consumption biomarkers than omega-3 PUFAs in the Baltic Sea area. The separate frequency questions measured fish consumption equally well when compared with the FFQ.
34 schema:genre article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N72d441df683d4dbba91b7e14297ecfa7
38 Nb9f75d1eb80f404ab9c4f6259115ba85
39 sg:journal.1097936
40 schema:keywords Baltic Sea area
41 FFQ fish consumption
42 Fishermen study
43 Fishermen substudy
44 Fishermen substudy men
45 Health 2000 substudy
46 LMG metrics
47 MeHg
48 PCBs
49 PUFA
50 Spearman correlation coefficient
51 acid
52 aim
53 area
54 better fish consumption biomarkers
55 biomarkers
56 biphenyls
57 blood samples
58 cardiovascular disease
59 coefficient
60 consumption
61 consumption biomarkers
62 contaminants
63 correlation coefficient
64 depth information
65 diabetes
66 dioxins
67 disease
68 effect
69 environmental contaminants
70 fatty acids
71 fish consumption
72 fish consumption biomarkers
73 food frequency questionnaire
74 frequency questionnaire
75 frequency questions
76 health effects
77 high-consumption population
78 important fish consumption biomarkers
79 information
80 measures
81 men
82 mercury
83 methyl mercury
84 metrics
85 modeling
86 multiple regression modeling
87 omega-3
88 overall health effects
89 participants
90 population
91 questionnaire
92 questions
93 regression modeling
94 samples
95 sea area
96 separate frequency questions
97 serum/blood samples
98 similar correlation coefficients
99 study
100 substudy
101 substudy men
102 women
103 schema:name Dioxins, polychlorinated biphenyls, methyl mercury and omega-3 polyunsaturated fatty acids as biomarkers of fish consumption
104 schema:pagination 313-323
105 schema:productId N6cf9a46eb0a044a0842637f00596bdb3
106 Nb6e9165a79f243148db0aa16ed916a14
107 Ncb704d899598435eb9bee68fe196620b
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007242701
109 https://doi.org/10.1038/ejcn.2009.147
110 schema:sdDatePublished 2022-01-01T18:22
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N56413b579c4e4f77be259f27e707193a
113 schema:url https://doi.org/10.1038/ejcn.2009.147
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0b440b7ec8954ff186ee9ec81a30362e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Food Contamination
119 rdf:type schema:DefinedTerm
120 N155507db522e47eb9c354e2883fe7ae0 rdf:first sg:person.01120622206.21
121 rdf:rest N9e603fee357c4fd0a58452c03d4c903e
122 N173db53d3cd74df9b0899e581a167491 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Surveys and Questionnaires
124 rdf:type schema:DefinedTerm
125 N1f5d1de980c2402cb3787fd72c8d979c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Polychlorinated Biphenyls
127 rdf:type schema:DefinedTerm
128 N24d5277a25d84db98c0094a3aad6b920 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Adult
130 rdf:type schema:DefinedTerm
131 N2bcfd48086b74101989d3a53c5663eea rdf:first sg:person.01072452773.36
132 rdf:rest rdf:nil
133 N320ceb5a1dcb4dadaca34e7a8529b339 rdf:first sg:person.0722454465.17
134 rdf:rest N155507db522e47eb9c354e2883fe7ae0
135 N3512381638f045ffb029061b3829a776 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Dioxins
137 rdf:type schema:DefinedTerm
138 N3527a447d8164ad6bfbf4e5db155f089 rdf:first sg:person.01371130433.68
139 rdf:rest Nc31ce5cdf8914c4ca0ee9b330ed3e4c2
140 N43935d0c58bf4d0a8d40a7eecd7d9ea3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Statistics, Nonparametric
142 rdf:type schema:DefinedTerm
143 N4a366c6c7a354f489b22c6fd635d3a8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Male
145 rdf:type schema:DefinedTerm
146 N4d119f32d496496f838e44bd0370369d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Young Adult
148 rdf:type schema:DefinedTerm
149 N526460640a2e4955b39968162b26937c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Female
151 rdf:type schema:DefinedTerm
152 N56413b579c4e4f77be259f27e707193a schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 N573f9ab124184fd9b7e3c46a031a0339 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Diet Surveys
156 rdf:type schema:DefinedTerm
157 N5ef9a6f03abf4285b14719f96d498572 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Humans
159 rdf:type schema:DefinedTerm
160 N6cf9a46eb0a044a0842637f00596bdb3 schema:name pubmed_id
161 schema:value 20104234
162 rdf:type schema:PropertyValue
163 N72d441df683d4dbba91b7e14297ecfa7 schema:issueNumber 3
164 rdf:type schema:PublicationIssue
165 N769f27fc89a840b9b412bec027eb0038 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Middle Aged
167 rdf:type schema:DefinedTerm
168 N7f89b6ecc2b84f27b2454e583e319b83 rdf:first sg:person.01030371373.36
169 rdf:rest N2bcfd48086b74101989d3a53c5663eea
170 N877e88a9c48f4d73b0ade96153f6d679 rdf:first sg:person.01102612040.11
171 rdf:rest Ned70e414590f4228aef1c02979ce4432
172 N92b87c5426964f2d9b66a81d4913bd80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Water Pollutants, Chemical
174 rdf:type schema:DefinedTerm
175 N9e603fee357c4fd0a58452c03d4c903e rdf:first sg:person.01041142034.13
176 rdf:rest N7f89b6ecc2b84f27b2454e583e319b83
177 Na1c3fb22668c4dbf95bfe3f97597b929 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Biomarkers
179 rdf:type schema:DefinedTerm
180 Na20d2f013353447c9266a4e52a19d21c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Aged
182 rdf:type schema:DefinedTerm
183 Nb6e9165a79f243148db0aa16ed916a14 schema:name doi
184 schema:value 10.1038/ejcn.2009.147
185 rdf:type schema:PropertyValue
186 Nb9f75d1eb80f404ab9c4f6259115ba85 schema:volumeNumber 64
187 rdf:type schema:PublicationVolume
188 Nbb9337890e264f3daca323afe54641fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Methylmercury Compounds
190 rdf:type schema:DefinedTerm
191 Nbdfb3e011459427ba26ff002e1d27399 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Fatty Acids, Omega-3
193 rdf:type schema:DefinedTerm
194 Nc31ce5cdf8914c4ca0ee9b330ed3e4c2 rdf:first sg:person.0103473223.15
195 rdf:rest N320ceb5a1dcb4dadaca34e7a8529b339
196 Ncb704d899598435eb9bee68fe196620b schema:name dimensions_id
197 schema:value pub.1007242701
198 rdf:type schema:PropertyValue
199 Ncd5db4776b6848d3812f774005768dd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Diet
201 rdf:type schema:DefinedTerm
202 Ndab71f9339d14bb2aa5b0dc6e9414449 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Animals
204 rdf:type schema:DefinedTerm
205 Ne4a01e9cf7a844abbaeb467ddbc29a84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Risk Assessment
207 rdf:type schema:DefinedTerm
208 Ned70e414590f4228aef1c02979ce4432 rdf:first sg:person.01332060026.49
209 rdf:rest N3527a447d8164ad6bfbf4e5db155f089
210 Nf2fbafd74fc444bfbe4dd4e62a8621cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Seafood
212 rdf:type schema:DefinedTerm
213 Nf664027dabdd45e19c3b9f5e5dca13d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Fishes
215 rdf:type schema:DefinedTerm
216 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
217 schema:name Medical and Health Sciences
218 rdf:type schema:DefinedTerm
219 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
220 schema:name Public Health and Health Services
221 rdf:type schema:DefinedTerm
222 sg:grant.8839109 http://pending.schema.org/fundedItem sg:pub.10.1038/ejcn.2009.147
223 rdf:type schema:MonetaryGrant
224 sg:journal.1097936 schema:issn 0954-3007
225 1476-5640
226 schema:name European Journal of Clinical Nutrition
227 schema:publisher Springer Nature
228 rdf:type schema:Periodical
229 sg:person.01030371373.36 schema:affiliation grid-institutes:grid.14758.3f
230 schema:familyName Vartiainen
231 schema:givenName T
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030371373.36
233 rdf:type schema:Person
234 sg:person.0103473223.15 schema:affiliation grid-institutes:grid.14758.3f
235 schema:familyName Marniemi
236 schema:givenName J
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103473223.15
238 rdf:type schema:Person
239 sg:person.01041142034.13 schema:affiliation grid-institutes:grid.14758.3f
240 schema:familyName Suominen-Taipale
241 schema:givenName L
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041142034.13
243 rdf:type schema:Person
244 sg:person.01072452773.36 schema:affiliation grid-institutes:grid.14758.3f
245 schema:familyName Verkasalo
246 schema:givenName P K
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072452773.36
248 rdf:type schema:Person
249 sg:person.01102612040.11 schema:affiliation grid-institutes:grid.14758.3f
250 schema:familyName Turunen
251 schema:givenName A W
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102612040.11
253 rdf:type schema:Person
254 sg:person.01120622206.21 schema:affiliation grid-institutes:grid.14758.3f
255 schema:familyName Tiittanen
256 schema:givenName P
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120622206.21
258 rdf:type schema:Person
259 sg:person.01332060026.49 schema:affiliation grid-institutes:grid.14758.3f
260 schema:familyName Männistö
261 schema:givenName S
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332060026.49
263 rdf:type schema:Person
264 sg:person.01371130433.68 schema:affiliation grid-institutes:grid.14758.3f
265 schema:familyName Kiviranta
266 schema:givenName H
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371130433.68
268 rdf:type schema:Person
269 sg:person.0722454465.17 schema:affiliation grid-institutes:grid.14758.3f
270 schema:familyName Jula
271 schema:givenName A
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722454465.17
273 rdf:type schema:Person
274 sg:pub.10.1007/s00420-002-0400-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1075268149
275 https://doi.org/10.1007/s00420-002-0400-y
276 rdf:type schema:CreativeWork
277 sg:pub.10.1007/s00439-009-0662-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017780250
278 https://doi.org/10.1007/s00439-009-0662-5
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/sj.ejcn.1600475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031829670
281 https://doi.org/10.1038/sj.ejcn.1600475
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/sj.ejcn.1601269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025467784
284 https://doi.org/10.1038/sj.ejcn.1601269
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/sj.ejcn.1602617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011203258
287 https://doi.org/10.1038/sj.ejcn.1602617
288 rdf:type schema:CreativeWork
289 grid-institutes:grid.14758.3f schema:alternateName Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
290 Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
291 Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
292 schema:name Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
293 Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
294 Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...