Dioxins, polychlorinated biphenyls, methyl mercury and omega-3 polyunsaturated fatty acids as biomarkers of fish consumption View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01-27

AUTHORS

A W Turunen, S Männistö, H Kiviranta, J Marniemi, A Jula, P Tiittanen, L Suominen-Taipale, T Vartiainen, P K Verkasalo

ABSTRACT

Background/Objectives:To assess biomarkers and frequency questions as measures of fish consumption.Subjects/Methods:Participants in the Fishermen substudy numbered 125 men and 139 women (aged 22–74), and in the Health 2000 substudy, 577 men and 712 women (aged 45–74) participated. The aim of the Fishermen study was to examine the overall health effect of fish consumption in a high-consumption population, whereas the aim of the Health 2000 substudy was to obtain in-depth information on cardiovascular diseases and diabetes. Fish consumption was measured by the same validated food frequency questionnaire (FFQ) in both the studies, with a further two separate frequency questions used in the Fishermen substudy. Dioxins, polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) (in the Fishermen substudy alone), and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) (in both studies) were analyzed from fasting serum/blood samples.Results:The Spearman's correlation coefficients between FFQ fish consumption and dioxins, PCBs, MeHg and omega-3 PUFAs were respectively 0.46, 0.48, 0.43 and 0.38 among the Fishermen substudy men, and 0.28, 0.36, 0.45 and 0.31 among women. Similar correlation coefficients were observed between FFQ fish consumption and serum omega-3 PUFAs in the Health 2000 substudy, and also between FFQ fish consumption and the frequency questions on fish consumption in the Fishermen substudy. According to multiple regression modeling and LMG metrics, the most important fish consumption biomarkers were dioxins and PCBs among the men and MeHg among the women.Conclusions:Environmental contaminants seemed to be slightly better fish consumption biomarkers than omega-3 PUFAs in the Baltic Sea area. The separate frequency questions measured fish consumption equally well when compared with the FFQ. More... »

PAGES

313-323

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ejcn.2009.147

DOI

http://dx.doi.org/10.1038/ejcn.2009.147

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007242701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20104234


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dioxins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids, Omega-3", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fishes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Contamination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylmercury Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polychlorinated Biphenyls", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seafood", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics, Nonparametric", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turunen", 
        "givenName": "A W", 
        "id": "sg:person.01102612040.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102612040.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e4nnist\u00f6", 
        "givenName": "S", 
        "id": "sg:person.01332060026.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332060026.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiviranta", 
        "givenName": "H", 
        "id": "sg:person.01371130433.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371130433.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marniemi", 
        "givenName": "J", 
        "id": "sg:person.0103473223.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103473223.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jula", 
        "givenName": "A", 
        "id": "sg:person.0722454465.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722454465.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiittanen", 
        "givenName": "P", 
        "id": "sg:person.01120622206.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120622206.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suominen-Taipale", 
        "givenName": "L", 
        "id": "sg:person.01041142034.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041142034.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vartiainen", 
        "givenName": "T", 
        "id": "sg:person.01030371373.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030371373.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verkasalo", 
        "givenName": "P K", 
        "id": "sg:person.01072452773.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072452773.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00439-009-0662-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017780250", 
          "https://doi.org/10.1007/s00439-009-0662-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1600475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031829670", 
          "https://doi.org/10.1038/sj.ejcn.1600475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00420-002-0400-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075268149", 
          "https://doi.org/10.1007/s00420-002-0400-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025467784", 
          "https://doi.org/10.1038/sj.ejcn.1601269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1602617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011203258", 
          "https://doi.org/10.1038/sj.ejcn.1602617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01-27", 
    "datePublishedReg": "2010-01-27", 
    "description": "Background/Objectives:To assess biomarkers and frequency questions as measures of fish consumption.Subjects/Methods:Participants in the Fishermen substudy numbered 125 men and 139 women (aged 22\u201374), and in the Health 2000 substudy, 577 men and 712 women (aged 45\u201374) participated. The aim of the Fishermen study was to examine the overall health effect of fish consumption in a high-consumption population, whereas the aim of the Health 2000 substudy was to obtain in-depth information on cardiovascular diseases and diabetes. Fish consumption was measured by the same validated food frequency questionnaire (FFQ) in both the studies, with a further two separate frequency questions used in the Fishermen substudy. Dioxins, polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) (in the Fishermen substudy alone), and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) (in both studies) were analyzed from fasting serum/blood samples.Results:The Spearman's correlation coefficients between FFQ fish consumption and dioxins, PCBs, MeHg and omega-3 PUFAs were respectively 0.46, 0.48, 0.43 and 0.38 among the Fishermen substudy men, and 0.28, 0.36, 0.45 and 0.31 among women. Similar correlation coefficients were observed between FFQ fish consumption and serum omega-3 PUFAs in the Health 2000 substudy, and also between FFQ fish consumption and the frequency questions on fish consumption in the Fishermen substudy. According to multiple regression modeling and LMG metrics, the most important fish consumption biomarkers were dioxins and PCBs among the men and MeHg among the women.Conclusions:Environmental contaminants seemed to be slightly better fish consumption biomarkers than omega-3 PUFAs in the Baltic Sea area. The separate frequency questions measured fish consumption equally well when compared with the FFQ.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ejcn.2009.147", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8839109", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "keywords": [
      "food frequency questionnaire", 
      "frequency questions", 
      "omega-3 PUFAs", 
      "fish consumption", 
      "overall health effects", 
      "Spearman correlation coefficient", 
      "frequency questionnaire", 
      "cardiovascular disease", 
      "substudy", 
      "blood samples", 
      "serum/blood samples", 
      "women", 
      "biomarkers", 
      "health effects", 
      "multiple regression modeling", 
      "fatty acids", 
      "regression modeling", 
      "men", 
      "correlation coefficient", 
      "methyl mercury", 
      "omega-3", 
      "PUFA", 
      "aim", 
      "diabetes", 
      "environmental contaminants", 
      "disease", 
      "dioxins", 
      "similar correlation coefficients", 
      "study", 
      "questionnaire", 
      "MeHg", 
      "participants", 
      "population", 
      "consumption", 
      "acid", 
      "measures", 
      "effect", 
      "questions", 
      "biphenyls", 
      "samples", 
      "area", 
      "information", 
      "PCBs", 
      "mercury", 
      "contaminants", 
      "coefficient", 
      "depth information", 
      "metrics", 
      "modeling", 
      "Baltic Sea area", 
      "sea area", 
      "Fishermen substudy", 
      "Health 2000 substudy", 
      "Fishermen study", 
      "high-consumption population", 
      "separate frequency questions", 
      "FFQ fish consumption", 
      "Fishermen substudy men", 
      "substudy men", 
      "LMG metrics", 
      "important fish consumption biomarkers", 
      "fish consumption biomarkers", 
      "consumption biomarkers", 
      "better fish consumption biomarkers"
    ], 
    "name": "Dioxins, polychlorinated biphenyls, methyl mercury and omega-3 polyunsaturated fatty acids as biomarkers of fish consumption", 
    "pagination": "313-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007242701"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ejcn.2009.147"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20104234"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ejcn.2009.147", 
      "https://app.dimensions.ai/details/publication/pub.1007242701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_528.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ejcn.2009.147"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ejcn.2009.147'


 

This table displays all metadata directly associated to this object as RDF triples.

296 TRIPLES      22 PREDICATES      117 URIs      104 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ejcn.2009.147 schema:about N00c56a80f2784397bd6d0b40562bcc03
2 N146ac1f7384c47bbaf56a2da11f99fdf
3 N2ee1ca7692504e1bb8b33bddc1da7abb
4 N44742ca4245b44f5b4a8e38d7713f762
5 N55dd5f63b35b4138bb5a04ac1ce1b2c1
6 N7109dc64892c4eec9db0b1086e6f132c
7 N734c15a3671646c99249af79e1ab76dc
8 N8f197392ef9844bd84cafc7fcef19a87
9 N9f6452b3dabe453aae3a4078a5f87b77
10 Na84e703cec3e456aa10c6a5d2b1f7e97
11 Naa90e38786a848e99f5b7f38e701ef62
12 Nacb8c1fb78f24b0eb2ac398a65fcc2b7
13 Nb0d2337321f1487493da77f7b5a06a69
14 Nbe824e0881d74bd2b3ca8ac890856eeb
15 Nc140591d35984324a196623b1121f24b
16 Nc43b07d0e8374ed2960a78ab8a8774a8
17 Nc69769552ffd480a91ca05874a7b6436
18 Ncc30ca311a8347a38680f3bbdd265a98
19 Ne2da86438d8e4667b2d3bc80ea1cd18f
20 Ne98d1f3165d04b08939428e6b14e9c81
21 Nf21826f22e3c4bdc8c844dd9e278e9f3
22 Nf3adc43b26434dd990813303e53341fb
23 anzsrc-for:11
24 anzsrc-for:1117
25 schema:author N07d1878dc79a4e14b570de47e82a82aa
26 schema:citation sg:pub.10.1007/s00420-002-0400-y
27 sg:pub.10.1007/s00439-009-0662-5
28 sg:pub.10.1038/sj.ejcn.1600475
29 sg:pub.10.1038/sj.ejcn.1601269
30 sg:pub.10.1038/sj.ejcn.1602617
31 schema:datePublished 2010-01-27
32 schema:datePublishedReg 2010-01-27
33 schema:description Background/Objectives:To assess biomarkers and frequency questions as measures of fish consumption.Subjects/Methods:Participants in the Fishermen substudy numbered 125 men and 139 women (aged 22–74), and in the Health 2000 substudy, 577 men and 712 women (aged 45–74) participated. The aim of the Fishermen study was to examine the overall health effect of fish consumption in a high-consumption population, whereas the aim of the Health 2000 substudy was to obtain in-depth information on cardiovascular diseases and diabetes. Fish consumption was measured by the same validated food frequency questionnaire (FFQ) in both the studies, with a further two separate frequency questions used in the Fishermen substudy. Dioxins, polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) (in the Fishermen substudy alone), and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) (in both studies) were analyzed from fasting serum/blood samples.Results:The Spearman's correlation coefficients between FFQ fish consumption and dioxins, PCBs, MeHg and omega-3 PUFAs were respectively 0.46, 0.48, 0.43 and 0.38 among the Fishermen substudy men, and 0.28, 0.36, 0.45 and 0.31 among women. Similar correlation coefficients were observed between FFQ fish consumption and serum omega-3 PUFAs in the Health 2000 substudy, and also between FFQ fish consumption and the frequency questions on fish consumption in the Fishermen substudy. According to multiple regression modeling and LMG metrics, the most important fish consumption biomarkers were dioxins and PCBs among the men and MeHg among the women.Conclusions:Environmental contaminants seemed to be slightly better fish consumption biomarkers than omega-3 PUFAs in the Baltic Sea area. The separate frequency questions measured fish consumption equally well when compared with the FFQ.
34 schema:genre article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N095e64f813ca4bd0856f2dea10e4d373
38 N8fe6c155395b4539a007b698414cc195
39 sg:journal.1097936
40 schema:keywords Baltic Sea area
41 FFQ fish consumption
42 Fishermen study
43 Fishermen substudy
44 Fishermen substudy men
45 Health 2000 substudy
46 LMG metrics
47 MeHg
48 PCBs
49 PUFA
50 Spearman correlation coefficient
51 acid
52 aim
53 area
54 better fish consumption biomarkers
55 biomarkers
56 biphenyls
57 blood samples
58 cardiovascular disease
59 coefficient
60 consumption
61 consumption biomarkers
62 contaminants
63 correlation coefficient
64 depth information
65 diabetes
66 dioxins
67 disease
68 effect
69 environmental contaminants
70 fatty acids
71 fish consumption
72 fish consumption biomarkers
73 food frequency questionnaire
74 frequency questionnaire
75 frequency questions
76 health effects
77 high-consumption population
78 important fish consumption biomarkers
79 information
80 measures
81 men
82 mercury
83 methyl mercury
84 metrics
85 modeling
86 multiple regression modeling
87 omega-3
88 omega-3 PUFAs
89 overall health effects
90 participants
91 population
92 questionnaire
93 questions
94 regression modeling
95 samples
96 sea area
97 separate frequency questions
98 serum/blood samples
99 similar correlation coefficients
100 study
101 substudy
102 substudy men
103 women
104 schema:name Dioxins, polychlorinated biphenyls, methyl mercury and omega-3 polyunsaturated fatty acids as biomarkers of fish consumption
105 schema:pagination 313-323
106 schema:productId Nb721e2bd24664f93bcd819e944a2eb3c
107 Nd286552e52fe4541a8d4135ed7b9a55f
108 Nf899dcccd71744c58634666182686290
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007242701
110 https://doi.org/10.1038/ejcn.2009.147
111 schema:sdDatePublished 2021-12-01T19:24
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N78da6a9314de4e88bdeb82c9835af152
114 schema:url https://doi.org/10.1038/ejcn.2009.147
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N00c56a80f2784397bd6d0b40562bcc03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Statistics, Nonparametric
120 rdf:type schema:DefinedTerm
121 N07d1878dc79a4e14b570de47e82a82aa rdf:first sg:person.01102612040.11
122 rdf:rest N6348d54f744b4979b8e252335aa78815
123 N095e64f813ca4bd0856f2dea10e4d373 schema:volumeNumber 64
124 rdf:type schema:PublicationVolume
125 N146ac1f7384c47bbaf56a2da11f99fdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Surveys and Questionnaires
127 rdf:type schema:DefinedTerm
128 N28a08dd0ab424ab1a2955ecb5c69174d rdf:first sg:person.01072452773.36
129 rdf:rest rdf:nil
130 N2ee1ca7692504e1bb8b33bddc1da7abb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Fishes
132 rdf:type schema:DefinedTerm
133 N40090663929a46d590c0ec44eb3aa0c0 rdf:first sg:person.01120622206.21
134 rdf:rest Nfa0b7305d51d4f2598c4c7cce7a15ae1
135 N44742ca4245b44f5b4a8e38d7713f762 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Water Pollutants, Chemical
137 rdf:type schema:DefinedTerm
138 N4d524cd936a441d29fe2ef15598c4a7d rdf:first sg:person.0103473223.15
139 rdf:rest N8192fd5b158f4d00977e5b543f93134e
140 N55dd5f63b35b4138bb5a04ac1ce1b2c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Methylmercury Compounds
142 rdf:type schema:DefinedTerm
143 N6348d54f744b4979b8e252335aa78815 rdf:first sg:person.01332060026.49
144 rdf:rest N8eacef0940a2408ca8b5e4840c472576
145 N7109dc64892c4eec9db0b1086e6f132c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Seafood
147 rdf:type schema:DefinedTerm
148 N734c15a3671646c99249af79e1ab76dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Biomarkers
150 rdf:type schema:DefinedTerm
151 N78da6a9314de4e88bdeb82c9835af152 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N8192fd5b158f4d00977e5b543f93134e rdf:first sg:person.0722454465.17
154 rdf:rest N40090663929a46d590c0ec44eb3aa0c0
155 N8eacef0940a2408ca8b5e4840c472576 rdf:first sg:person.01371130433.68
156 rdf:rest N4d524cd936a441d29fe2ef15598c4a7d
157 N8f197392ef9844bd84cafc7fcef19a87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Diet
159 rdf:type schema:DefinedTerm
160 N8fe6c155395b4539a007b698414cc195 schema:issueNumber 3
161 rdf:type schema:PublicationIssue
162 N9f6452b3dabe453aae3a4078a5f87b77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Middle Aged
164 rdf:type schema:DefinedTerm
165 Na84e703cec3e456aa10c6a5d2b1f7e97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Animals
167 rdf:type schema:DefinedTerm
168 Naa90e38786a848e99f5b7f38e701ef62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Fatty Acids, Omega-3
170 rdf:type schema:DefinedTerm
171 Nacb8c1fb78f24b0eb2ac398a65fcc2b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Young Adult
173 rdf:type schema:DefinedTerm
174 Nb0d2337321f1487493da77f7b5a06a69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Male
176 rdf:type schema:DefinedTerm
177 Nb721e2bd24664f93bcd819e944a2eb3c schema:name dimensions_id
178 schema:value pub.1007242701
179 rdf:type schema:PropertyValue
180 Nbe824e0881d74bd2b3ca8ac890856eeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Dioxins
182 rdf:type schema:DefinedTerm
183 Nc140591d35984324a196623b1121f24b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Diet Surveys
185 rdf:type schema:DefinedTerm
186 Nc43b07d0e8374ed2960a78ab8a8774a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Humans
188 rdf:type schema:DefinedTerm
189 Nc69769552ffd480a91ca05874a7b6436 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Aged
191 rdf:type schema:DefinedTerm
192 Ncc30ca311a8347a38680f3bbdd265a98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Adult
194 rdf:type schema:DefinedTerm
195 Nd286552e52fe4541a8d4135ed7b9a55f schema:name doi
196 schema:value 10.1038/ejcn.2009.147
197 rdf:type schema:PropertyValue
198 Nd87b772701d34180bbdfbd914245b3da rdf:first sg:person.01030371373.36
199 rdf:rest N28a08dd0ab424ab1a2955ecb5c69174d
200 Ne2da86438d8e4667b2d3bc80ea1cd18f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Polychlorinated Biphenyls
202 rdf:type schema:DefinedTerm
203 Ne98d1f3165d04b08939428e6b14e9c81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Risk Assessment
205 rdf:type schema:DefinedTerm
206 Nf21826f22e3c4bdc8c844dd9e278e9f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Food Contamination
208 rdf:type schema:DefinedTerm
209 Nf3adc43b26434dd990813303e53341fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Female
211 rdf:type schema:DefinedTerm
212 Nf899dcccd71744c58634666182686290 schema:name pubmed_id
213 schema:value 20104234
214 rdf:type schema:PropertyValue
215 Nfa0b7305d51d4f2598c4c7cce7a15ae1 rdf:first sg:person.01041142034.13
216 rdf:rest Nd87b772701d34180bbdfbd914245b3da
217 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
218 schema:name Medical and Health Sciences
219 rdf:type schema:DefinedTerm
220 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
221 schema:name Public Health and Health Services
222 rdf:type schema:DefinedTerm
223 sg:grant.8839109 http://pending.schema.org/fundedItem sg:pub.10.1038/ejcn.2009.147
224 rdf:type schema:MonetaryGrant
225 sg:journal.1097936 schema:issn 0954-3007
226 1476-5640
227 schema:name European Journal of Clinical Nutrition
228 schema:publisher Springer Nature
229 rdf:type schema:Periodical
230 sg:person.01030371373.36 schema:affiliation grid-institutes:grid.14758.3f
231 schema:familyName Vartiainen
232 schema:givenName T
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030371373.36
234 rdf:type schema:Person
235 sg:person.0103473223.15 schema:affiliation grid-institutes:grid.14758.3f
236 schema:familyName Marniemi
237 schema:givenName J
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103473223.15
239 rdf:type schema:Person
240 sg:person.01041142034.13 schema:affiliation grid-institutes:grid.14758.3f
241 schema:familyName Suominen-Taipale
242 schema:givenName L
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041142034.13
244 rdf:type schema:Person
245 sg:person.01072452773.36 schema:affiliation grid-institutes:grid.14758.3f
246 schema:familyName Verkasalo
247 schema:givenName P K
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072452773.36
249 rdf:type schema:Person
250 sg:person.01102612040.11 schema:affiliation grid-institutes:grid.14758.3f
251 schema:familyName Turunen
252 schema:givenName A W
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102612040.11
254 rdf:type schema:Person
255 sg:person.01120622206.21 schema:affiliation grid-institutes:grid.14758.3f
256 schema:familyName Tiittanen
257 schema:givenName P
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120622206.21
259 rdf:type schema:Person
260 sg:person.01332060026.49 schema:affiliation grid-institutes:grid.14758.3f
261 schema:familyName Männistö
262 schema:givenName S
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332060026.49
264 rdf:type schema:Person
265 sg:person.01371130433.68 schema:affiliation grid-institutes:grid.14758.3f
266 schema:familyName Kiviranta
267 schema:givenName H
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371130433.68
269 rdf:type schema:Person
270 sg:person.0722454465.17 schema:affiliation grid-institutes:grid.14758.3f
271 schema:familyName Jula
272 schema:givenName A
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722454465.17
274 rdf:type schema:Person
275 sg:pub.10.1007/s00420-002-0400-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1075268149
276 https://doi.org/10.1007/s00420-002-0400-y
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/s00439-009-0662-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017780250
279 https://doi.org/10.1007/s00439-009-0662-5
280 rdf:type schema:CreativeWork
281 sg:pub.10.1038/sj.ejcn.1600475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031829670
282 https://doi.org/10.1038/sj.ejcn.1600475
283 rdf:type schema:CreativeWork
284 sg:pub.10.1038/sj.ejcn.1601269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025467784
285 https://doi.org/10.1038/sj.ejcn.1601269
286 rdf:type schema:CreativeWork
287 sg:pub.10.1038/sj.ejcn.1602617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011203258
288 https://doi.org/10.1038/sj.ejcn.1602617
289 rdf:type schema:CreativeWork
290 grid-institutes:grid.14758.3f schema:alternateName Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
291 Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
292 Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
293 schema:name Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
294 Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
295 Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
296 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...