Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05-16

AUTHORS

J Lavaur, M Lemaire, J Pype, D Le Nogue, E C Hirsch, P P Michel

ABSTRACT

Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon's effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these neurotrophic effects, albeit with less efficacy than xenon. In conclusion, we demonstrate for the first time that xenon may have a therapeutic potential in AD. More... »

PAGES

16018

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/cddiscovery.2016.18

DOI

http://dx.doi.org/10.1038/cddiscovery.2016.18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004376228

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27551511


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.425274.2", 
          "name": [
            "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavaur", 
        "givenName": "J", 
        "id": "sg:person.0746333537.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746333537.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Liquide Sant\u00e9 International Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France", 
          "id": "http://www.grid.ac/institutes/grid.423839.7", 
          "name": [
            "Air Liquide Sant\u00e9 International Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lemaire", 
        "givenName": "M", 
        "id": "sg:person.01236520765.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236520765.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Liquide Sant\u00e9 International Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France", 
          "id": "http://www.grid.ac/institutes/grid.423839.7", 
          "name": [
            "Air Liquide Sant\u00e9 International Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pype", 
        "givenName": "J", 
        "id": "sg:person.01055301555.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055301555.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.425274.2", 
          "name": [
            "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nogue", 
        "givenName": "D Le", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.425274.2", 
          "name": [
            "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirsch", 
        "givenName": "E C", 
        "id": "sg:person.014512332322.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512332322.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.425274.2", 
          "name": [
            "Institut National de la Sant\u00e9 et de la Recherche M\u00e9dicale, U 1127, CNRS, Unit\u00e9 Mixte de Recherche (UMR) 7225, Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle \u00e9pini\u00e8re, ICM, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michel", 
        "givenName": "P P", 
        "id": "sg:person.0770201226.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770201226.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/2045-9912-3-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001761187", 
          "https://doi.org/10.1186/2045-9912-3-12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010939304104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017390640", 
          "https://doi.org/10.1023/a:1010939304104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00702-013-1135-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046930970", 
          "https://doi.org/10.1007/s00702-013-1135-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050290970", 
          "https://doi.org/10.1038/nn835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.2334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025253833", 
          "https://doi.org/10.1038/nn.2334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002195494", 
          "https://doi.org/10.1038/24525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031138180", 
          "https://doi.org/10.1038/nm1577"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-16", 
    "datePublishedReg": "2016-05-16", 
    "description": "Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon's effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these neurotrophic effects, albeit with less efficacy than xenon. In conclusion, we demonstrate for the first time that xenon may have a therapeutic potential in AD. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/cddiscovery.2016.18", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052270", 
        "issn": [
          "2058-7716"
        ], 
        "name": "Cell Death Discovery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "cholinergic neurons", 
      "cortical neurons", 
      "neuronal death", 
      "excitotoxic stress", 
      "disease pathology", 
      "chronic neurodegenerative disorders", 
      "survival-promoting effects", 
      "NMDA glutamate receptors", 
      "basal forebrain cultures", 
      "Alzheimer's disease pathology", 
      "NMDA receptor antagonism", 
      "glycine-binding site", 
      "cultures of neurons", 
      "xenon neuroprotection", 
      "acute brain", 
      "receptor antagonism", 
      "neurotrophic effects", 
      "trans-pyrrolidine", 
      "NMDA receptors", 
      "anoxic injury", 
      "glutamate receptors", 
      "glutamate uptake", 
      "neuroprotection", 
      "noncompetitive antagonist", 
      "protective potential", 
      "cholinergic traits", 
      "therapeutic potential", 
      "neurodegenerative disorders", 
      "less efficacy", 
      "neurons", 
      "progressive loss", 
      "stimulatory effect", 
      "forebrain cultures", 
      "free radical-scavenging activity", 
      "memantine", 
      "xenon effect", 
      "receptors", 
      "death", 
      "radical-scavenging activity", 
      "PDC", 
      "excess of glycine", 
      "NMDA", 
      "pathogenesis", 
      "ketamine", 
      "injury", 
      "antagonist", 
      "pathology", 
      "acetylcysteine", 
      "brain", 
      "disorders", 
      "efficacy", 
      "effect", 
      "rescue", 
      "antagonism", 
      "efflux", 
      "morphological differentiation", 
      "culture", 
      "days", 
      "antioxidants", 
      "culture atmosphere", 
      "conclusion", 
      "Trolox", 
      "uptake", 
      "response", 
      "differentiation", 
      "stress", 
      "period", 
      "activity", 
      "glycine", 
      "potential", 
      "loss", 
      "first time", 
      "acid", 
      "concentration", 
      "dicarboxylic acid", 
      "sites", 
      "excess", 
      "time", 
      "Herein", 
      "AD", 
      "conditions", 
      "xenon", 
      "interaction", 
      "competitive interactions", 
      "traits", 
      "gases", 
      "nitrogen", 
      "atmosphere", 
      "argon", 
      "noble gases", 
      "low-level excitotoxic stress", 
      "cell culture atmosphere", 
      "suboptimal rescue", 
      "PDC-induced neuronal death"
    ], 
    "name": "Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress", 
    "pagination": "16018", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004376228"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/cddiscovery.2016.18"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27551511"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/cddiscovery.2016.18", 
      "https://app.dimensions.ai/details/publication/pub.1004376228"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_715.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/cddiscovery.2016.18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/cddiscovery.2016.18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/cddiscovery.2016.18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/cddiscovery.2016.18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/cddiscovery.2016.18'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      22 PREDICATES      127 URIs      112 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/cddiscovery.2016.18 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N6701eb0d5a8b479d9a8837f17da50f74
4 schema:citation sg:pub.10.1007/s00702-013-1135-5
5 sg:pub.10.1023/a:1010939304104
6 sg:pub.10.1038/24525
7 sg:pub.10.1038/nm1577
8 sg:pub.10.1038/nn.2334
9 sg:pub.10.1038/nn835
10 sg:pub.10.1186/2045-9912-3-12
11 schema:datePublished 2016-05-16
12 schema:datePublishedReg 2016-05-16
13 schema:description Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon's effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these neurotrophic effects, albeit with less efficacy than xenon. In conclusion, we demonstrate for the first time that xenon may have a therapeutic potential in AD.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N07e0d9de21064fdeb1ea9516579e5ab1
18 N38a41e30548248589be47d4e1d1dc32b
19 sg:journal.1052270
20 schema:keywords AD
21 Alzheimer's disease pathology
22 Herein
23 NMDA
24 NMDA glutamate receptors
25 NMDA receptor antagonism
26 NMDA receptors
27 PDC
28 PDC-induced neuronal death
29 Trolox
30 acetylcysteine
31 acid
32 activity
33 acute brain
34 anoxic injury
35 antagonism
36 antagonist
37 antioxidants
38 argon
39 atmosphere
40 basal forebrain cultures
41 brain
42 cell culture atmosphere
43 cholinergic neurons
44 cholinergic traits
45 chronic neurodegenerative disorders
46 competitive interactions
47 concentration
48 conclusion
49 conditions
50 cortical neurons
51 culture
52 culture atmosphere
53 cultures of neurons
54 days
55 death
56 dicarboxylic acid
57 differentiation
58 disease pathology
59 disorders
60 effect
61 efficacy
62 efflux
63 excess
64 excess of glycine
65 excitotoxic stress
66 first time
67 forebrain cultures
68 free radical-scavenging activity
69 gases
70 glutamate receptors
71 glutamate uptake
72 glycine
73 glycine-binding site
74 injury
75 interaction
76 ketamine
77 less efficacy
78 loss
79 low-level excitotoxic stress
80 memantine
81 morphological differentiation
82 neurodegenerative disorders
83 neuronal death
84 neurons
85 neuroprotection
86 neurotrophic effects
87 nitrogen
88 noble gases
89 noncompetitive antagonist
90 pathogenesis
91 pathology
92 period
93 potential
94 progressive loss
95 protective potential
96 radical-scavenging activity
97 receptor antagonism
98 receptors
99 rescue
100 response
101 sites
102 stimulatory effect
103 stress
104 suboptimal rescue
105 survival-promoting effects
106 therapeutic potential
107 time
108 traits
109 trans-pyrrolidine
110 uptake
111 xenon
112 xenon effect
113 xenon neuroprotection
114 schema:name Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress
115 schema:pagination 16018
116 schema:productId N045a011827d1446987f1c8664b9d4b31
117 N30834255c5f4480d85bf3aa04dd896ad
118 Ncb286e5954284f6db40da99c86d06ca1
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004376228
120 https://doi.org/10.1038/cddiscovery.2016.18
121 schema:sdDatePublished 2021-11-01T18:29
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher Nf96252d449464b169900bd3575cfa478
124 schema:url https://doi.org/10.1038/cddiscovery.2016.18
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N045a011827d1446987f1c8664b9d4b31 schema:name doi
129 schema:value 10.1038/cddiscovery.2016.18
130 rdf:type schema:PropertyValue
131 N07e0d9de21064fdeb1ea9516579e5ab1 schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 N30834255c5f4480d85bf3aa04dd896ad schema:name dimensions_id
134 schema:value pub.1004376228
135 rdf:type schema:PropertyValue
136 N38a41e30548248589be47d4e1d1dc32b schema:volumeNumber 2
137 rdf:type schema:PublicationVolume
138 N6701eb0d5a8b479d9a8837f17da50f74 rdf:first sg:person.0746333537.59
139 rdf:rest Nb06c1bf2b37b4e269b93230dc9b83491
140 Na0daca958a194f5cbaebd5ac2a7ba1ba rdf:first sg:person.01055301555.14
141 rdf:rest Nd5268cbad0d1469baa440784db882064
142 Nb06c1bf2b37b4e269b93230dc9b83491 rdf:first sg:person.01236520765.81
143 rdf:rest Na0daca958a194f5cbaebd5ac2a7ba1ba
144 Ncb286e5954284f6db40da99c86d06ca1 schema:name pubmed_id
145 schema:value 27551511
146 rdf:type schema:PropertyValue
147 Nceb41089869744b48a2bcd87a0bf678a rdf:first sg:person.0770201226.56
148 rdf:rest rdf:nil
149 Nd5268cbad0d1469baa440784db882064 rdf:first Ne8bcb650353b458d9166fa9c15827d64
150 rdf:rest Ne8623e59eb2147c7abfe3abc8249ea90
151 Ne8623e59eb2147c7abfe3abc8249ea90 rdf:first sg:person.014512332322.58
152 rdf:rest Nceb41089869744b48a2bcd87a0bf678a
153 Ne8bcb650353b458d9166fa9c15827d64 schema:affiliation grid-institutes:grid.425274.2
154 schema:familyName Nogue
155 schema:givenName D Le
156 rdf:type schema:Person
157 Nf96252d449464b169900bd3575cfa478 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
163 schema:name Neurosciences
164 rdf:type schema:DefinedTerm
165 sg:journal.1052270 schema:issn 2058-7716
166 schema:name Cell Death Discovery
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.01055301555.14 schema:affiliation grid-institutes:grid.423839.7
170 schema:familyName Pype
171 schema:givenName J
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055301555.14
173 rdf:type schema:Person
174 sg:person.01236520765.81 schema:affiliation grid-institutes:grid.423839.7
175 schema:familyName Lemaire
176 schema:givenName M
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236520765.81
178 rdf:type schema:Person
179 sg:person.014512332322.58 schema:affiliation grid-institutes:grid.425274.2
180 schema:familyName Hirsch
181 schema:givenName E C
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512332322.58
183 rdf:type schema:Person
184 sg:person.0746333537.59 schema:affiliation grid-institutes:grid.425274.2
185 schema:familyName Lavaur
186 schema:givenName J
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746333537.59
188 rdf:type schema:Person
189 sg:person.0770201226.56 schema:affiliation grid-institutes:grid.425274.2
190 schema:familyName Michel
191 schema:givenName P P
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770201226.56
193 rdf:type schema:Person
194 sg:pub.10.1007/s00702-013-1135-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046930970
195 https://doi.org/10.1007/s00702-013-1135-5
196 rdf:type schema:CreativeWork
197 sg:pub.10.1023/a:1010939304104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017390640
198 https://doi.org/10.1023/a:1010939304104
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/24525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002195494
201 https://doi.org/10.1038/24525
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nm1577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031138180
204 https://doi.org/10.1038/nm1577
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nn.2334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025253833
207 https://doi.org/10.1038/nn.2334
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nn835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050290970
210 https://doi.org/10.1038/nn835
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/2045-9912-3-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001761187
213 https://doi.org/10.1186/2045-9912-3-12
214 rdf:type schema:CreativeWork
215 grid-institutes:grid.423839.7 schema:alternateName Air Liquide Santé International Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
216 schema:name Air Liquide Santé International Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
217 rdf:type schema:Organization
218 grid-institutes:grid.425274.2 schema:alternateName Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
219 schema:name Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...