Comparison of fully and semi-automated area-based methods for measuring mammographic density and predicting breast cancer risk View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-04

AUTHORS

U Sovio, J Li, Z Aitken, K Humphreys, K Czene, S Moss, P Hall, V McCormack, I dos-Santos-Silva

ABSTRACT

BACKGROUND: Mammographic density is a strong risk factor for breast cancer but the lack of valid fully automated methods for quantifying it has precluded its use in clinical and screening settings. We compared the performance of a recently developed automated approach, based on the public domain ImageJ programme, to the well-established semi-automated Cumulus method. METHODS: We undertook a case-control study within the intervention arm of the Age Trial, in which ∼54,000 British women were offered annual mammography at ages 40-49 years. A total of 299 breast cancer cases diagnosed during follow-up and 422 matched (on screening centre, date of birth and dates of screenings) controls were included. Medio-lateral oblique (MLO) images taken closest to age 41 and at least one year before the index case's diagnosis were digitised for each participant. Cumulus readings were performed in the left MLO and ImageJ-based readings in both left and right MLOs. Conditional logistic regression was used to examine density-breast cancer associations. RESULTS: The association between density readings taken from one single MLO and breast cancer risk was weaker for the ImageJ-based method than for Cumulus (age-body mass index-adjusted odds ratio (OR) per one s.d. increase in percent density (95% CI): 1.52 (1.24-1.86) and 1.61 (1.33-1.94), respectively). The ImageJ-based density-cancer association strengthened when the mean of left-right MLO readings was used: OR=1.61 (1.31-1.98). CONCLUSIONS: The mean of left-right MLO readings yielded by the ImageJ-based method was as strong a predictor of risk as Cumulus readings from a single MLO image. The ImageJ-based method, using the mean of two measurements, is a valid automated alternative to Cumulus for measuring density in analogue films. More... »

PAGES

1908

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/bjc.2014.82

DOI

http://dx.doi.org/10.1038/bjc.2014.82

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026804871

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24556624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammary Glands, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sovio", 
        "givenName": "U", 
        "id": "sg:person.01133030564.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133030564.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genome Institute of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.418377.e", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore", 
            "Human Genetics Lab, Genome Institute of Singapore, 60 Biopolis Street, 02-01, Singapore 138672, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "J", 
        "id": "sg:person.013760043547.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aitken", 
        "givenName": "Z", 
        "id": "sg:person.01257257074.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257257074.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, Stockholm 17177, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Humphreys", 
        "givenName": "K", 
        "id": "sg:person.0624052041.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624052041.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, Stockholm 17177, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czene", 
        "givenName": "K", 
        "id": "sg:person.013117404317.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117404317.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Centre for Cancer Prevention, Queen Mary University of London, Wolfson Institute of Preventive Medicine, Charterhouse Square, London EC1M 6BQ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moss", 
        "givenName": "S", 
        "id": "sg:person.011611703032.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611703032.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, Stockholm 17177, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "P", 
        "id": "sg:person.01010701573.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010701573.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Agency For Research On Cancer", 
          "id": "https://www.grid.ac/institutes/grid.17703.32", 
          "name": [
            "Environment and Radiation Section, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCormack", 
        "givenName": "V", 
        "id": "sg:person.01367601343.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367601343.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "dos-Santos-Silva", 
        "givenName": "I", 
        "id": "sg:person.01230144105.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230144105.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-10-1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006543075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829229", 
          "https://doi.org/10.1186/bcr3238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829229", 
          "https://doi.org/10.1186/bcr3238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61611-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010347035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-05-0824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012670200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020053537", 
          "https://doi.org/10.1186/bcr1829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020053537", 
          "https://doi.org/10.1186/bcr1829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa062790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022154822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1539038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023986662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61228-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028739720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-09-1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040449857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-07-0085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042918440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-08-0170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047940693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-06-0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049006559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)69834-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049442125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djs254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050861007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/39/10/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059022537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/56/9/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818254"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-04", 
    "datePublishedReg": "2014-04-01", 
    "description": "BACKGROUND: Mammographic density is a strong risk factor for breast cancer but the lack of valid fully automated methods for quantifying it has precluded its use in clinical and screening settings. We compared the performance of a recently developed automated approach, based on the public domain ImageJ programme, to the well-established semi-automated Cumulus method.\nMETHODS: We undertook a case-control study within the intervention arm of the Age Trial, in which \u223c54,000 British women were offered annual mammography at ages 40-49 years. A total of 299 breast cancer cases diagnosed during follow-up and 422 matched (on screening centre, date of birth and dates of screenings) controls were included. Medio-lateral oblique (MLO) images taken closest to age 41 and at least one year before the index case's diagnosis were digitised for each participant. Cumulus readings were performed in the left MLO and ImageJ-based readings in both left and right MLOs. Conditional logistic regression was used to examine density-breast cancer associations.\nRESULTS: The association between density readings taken from one single MLO and breast cancer risk was weaker for the ImageJ-based method than for Cumulus (age-body mass index-adjusted odds ratio (OR) per one s.d. increase in percent density (95% CI): 1.52 (1.24-1.86) and 1.61 (1.33-1.94), respectively). The ImageJ-based density-cancer association strengthened when the mean of left-right MLO readings was used: OR=1.61 (1.31-1.98).\nCONCLUSIONS: The mean of left-right MLO readings yielded by the ImageJ-based method was as strong a predictor of risk as Cumulus readings from a single MLO image. The ImageJ-based method, using the mean of two measurements, is a valid automated alternative to Cumulus for measuring density in analogue films.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/bjc.2014.82", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017082", 
        "issn": [
          "0007-0920", 
          "1532-1827"
        ], 
        "name": "British Journal of Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "110"
      }
    ], 
    "name": "Comparison of fully and semi-automated area-based methods for measuring mammographic density and predicting breast cancer risk", 
    "pagination": "1908", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7fb1ba85c066ecb631430aff88b00e8b37b312224a4d7bd0b70e2930bf177b93"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24556624"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0370635"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/bjc.2014.82"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026804871"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/bjc.2014.82", 
      "https://app.dimensions.ai/details/publication/pub.1026804871"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/bjc201482"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/bjc.2014.82'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/bjc.2014.82'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/bjc.2014.82'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/bjc.2014.82'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      60 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/bjc.2014.82 schema:about N0f4ff32bc73242f290e5ec9dc2c314af
2 N33332f046e7f43d6b73d4e4919b51533
3 N3cb12eb057f049e58493750a0a175d7a
4 N3f476f9232634263bac63a1a1f8c1645
5 N6dcd943fa25b46c6a8c5fd245803b2e2
6 N6e1a32bfd33c4f2baec4ba8f7f5f355c
7 N8479203fe535400eb09fd5c89f14a63c
8 N854299bc0cce424a8f1bd621b39dc0c3
9 N8a5da11fba404b5e9efe207bd605dcb9
10 N9a57a56c0c034398a8a1727b1d25f0fb
11 Nb1826b42ec5e4ef9a52a9fcd0ac39607
12 Ned18534b7a2f47549d8f141994d9ba69
13 Nf33778600b8c493eac55a5de40678f88
14 Nfc9233f5fc3744f589accacf39919ac3
15 anzsrc-for:11
16 anzsrc-for:1117
17 schema:author Nbd24f14d430c42fb992011efc6cf4731
18 schema:citation sg:pub.10.1186/bcr1829
19 sg:pub.10.1186/bcr3238
20 https://doi.org/10.1016/s0140-6736(06)69834-6
21 https://doi.org/10.1016/s0140-6736(12)61228-8
22 https://doi.org/10.1016/s0140-6736(12)61611-0
23 https://doi.org/10.1056/nejmoa062790
24 https://doi.org/10.1088/0031-9155/39/10/008
25 https://doi.org/10.1088/0031-9155/56/9/005
26 https://doi.org/10.1093/jnci/djs254
27 https://doi.org/10.1118/1.1539038
28 https://doi.org/10.1136/jms.6.3.144
29 https://doi.org/10.1158/1055-9965.epi-05-0824
30 https://doi.org/10.1158/1055-9965.epi-06-0034
31 https://doi.org/10.1158/1055-9965.epi-07-0085
32 https://doi.org/10.1158/1055-9965.epi-08-0170
33 https://doi.org/10.1158/1055-9965.epi-09-1059
34 https://doi.org/10.1158/1055-9965.epi-10-1150
35 schema:datePublished 2014-04
36 schema:datePublishedReg 2014-04-01
37 schema:description BACKGROUND: Mammographic density is a strong risk factor for breast cancer but the lack of valid fully automated methods for quantifying it has precluded its use in clinical and screening settings. We compared the performance of a recently developed automated approach, based on the public domain ImageJ programme, to the well-established semi-automated Cumulus method. METHODS: We undertook a case-control study within the intervention arm of the Age Trial, in which ∼54,000 British women were offered annual mammography at ages 40-49 years. A total of 299 breast cancer cases diagnosed during follow-up and 422 matched (on screening centre, date of birth and dates of screenings) controls were included. Medio-lateral oblique (MLO) images taken closest to age 41 and at least one year before the index case's diagnosis were digitised for each participant. Cumulus readings were performed in the left MLO and ImageJ-based readings in both left and right MLOs. Conditional logistic regression was used to examine density-breast cancer associations. RESULTS: The association between density readings taken from one single MLO and breast cancer risk was weaker for the ImageJ-based method than for Cumulus (age-body mass index-adjusted odds ratio (OR) per one s.d. increase in percent density (95% CI): 1.52 (1.24-1.86) and 1.61 (1.33-1.94), respectively). The ImageJ-based density-cancer association strengthened when the mean of left-right MLO readings was used: OR=1.61 (1.31-1.98). CONCLUSIONS: The mean of left-right MLO readings yielded by the ImageJ-based method was as strong a predictor of risk as Cumulus readings from a single MLO image. The ImageJ-based method, using the mean of two measurements, is a valid automated alternative to Cumulus for measuring density in analogue films.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N6bcd77d0f2664318bf4271808c5224d1
42 N7ba7a1359a1f4053831b06fe4222364d
43 sg:journal.1017082
44 schema:name Comparison of fully and semi-automated area-based methods for measuring mammographic density and predicting breast cancer risk
45 schema:pagination 1908
46 schema:productId N02dc1b36543b4ea78512365a28ad4ba8
47 N033c55d60b3a4bff998158d61083a71c
48 N26e4fc8c88e541bdbec06c8fc273d04c
49 N6f74c995b2554d5682bfb8b44998a220
50 N8d7258a63d1f482abfe8c0da32179e26
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026804871
52 https://doi.org/10.1038/bjc.2014.82
53 schema:sdDatePublished 2019-04-11T09:31
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ndd22cf791088458aa50d19c2945b2a0b
56 schema:url https://www.nature.com/articles/bjc201482
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N02dc1b36543b4ea78512365a28ad4ba8 schema:name doi
61 schema:value 10.1038/bjc.2014.82
62 rdf:type schema:PropertyValue
63 N033c55d60b3a4bff998158d61083a71c schema:name nlm_unique_id
64 schema:value 0370635
65 rdf:type schema:PropertyValue
66 N068aa691b47d49d1acb23e5696830a3e rdf:first sg:person.01257257074.20
67 rdf:rest N0a1f29dc6cac4d46890731d3f41dbccf
68 N0a1f29dc6cac4d46890731d3f41dbccf rdf:first sg:person.0624052041.17
69 rdf:rest Nede34b09cfc24eefb77585852b2905ef
70 N0f4ff32bc73242f290e5ec9dc2c314af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Middle Aged
72 rdf:type schema:DefinedTerm
73 N26e4fc8c88e541bdbec06c8fc273d04c schema:name dimensions_id
74 schema:value pub.1026804871
75 rdf:type schema:PropertyValue
76 N33332f046e7f43d6b73d4e4919b51533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name United Kingdom
78 rdf:type schema:DefinedTerm
79 N3cb12eb057f049e58493750a0a175d7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Age Factors
81 rdf:type schema:DefinedTerm
82 N3f476f9232634263bac63a1a1f8c1645 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Case-Control Studies
84 rdf:type schema:DefinedTerm
85 N6bcd77d0f2664318bf4271808c5224d1 schema:issueNumber 7
86 rdf:type schema:PublicationIssue
87 N6dcd943fa25b46c6a8c5fd245803b2e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Humans
89 rdf:type schema:DefinedTerm
90 N6e1a32bfd33c4f2baec4ba8f7f5f355c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Mammography
92 rdf:type schema:DefinedTerm
93 N6f74c995b2554d5682bfb8b44998a220 schema:name readcube_id
94 schema:value 7fb1ba85c066ecb631430aff88b00e8b37b312224a4d7bd0b70e2930bf177b93
95 rdf:type schema:PropertyValue
96 N7ba7a1359a1f4053831b06fe4222364d schema:volumeNumber 110
97 rdf:type schema:PublicationVolume
98 N8479203fe535400eb09fd5c89f14a63c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Female
100 rdf:type schema:DefinedTerm
101 N854299bc0cce424a8f1bd621b39dc0c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Breast Neoplasms
103 rdf:type schema:DefinedTerm
104 N8857291ec087407486a7fd0ea1749cfe rdf:first sg:person.01010701573.25
105 rdf:rest Nc2e020ba2f2347bca7417d80b9db172d
106 N8a5da11fba404b5e9efe207bd605dcb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Adult
108 rdf:type schema:DefinedTerm
109 N8d7258a63d1f482abfe8c0da32179e26 schema:name pubmed_id
110 schema:value 24556624
111 rdf:type schema:PropertyValue
112 N9a57a56c0c034398a8a1727b1d25f0fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Image Processing, Computer-Assisted
114 rdf:type schema:DefinedTerm
115 Nb1826b42ec5e4ef9a52a9fcd0ac39607 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Risk Factors
117 rdf:type schema:DefinedTerm
118 Nb77c8b533a1c46b08869991ff98c9206 rdf:first sg:person.011611703032.94
119 rdf:rest N8857291ec087407486a7fd0ea1749cfe
120 Nbd24f14d430c42fb992011efc6cf4731 rdf:first sg:person.01133030564.09
121 rdf:rest Neb3810ca083d4d29b1846ea70479bed3
122 Nc2e020ba2f2347bca7417d80b9db172d rdf:first sg:person.01367601343.61
123 rdf:rest Nef1d50492b6d4ac08b455677edbfbac8
124 Ndd22cf791088458aa50d19c2945b2a0b schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Neb3810ca083d4d29b1846ea70479bed3 rdf:first sg:person.013760043547.76
127 rdf:rest N068aa691b47d49d1acb23e5696830a3e
128 Ned18534b7a2f47549d8f141994d9ba69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Breast Density
130 rdf:type schema:DefinedTerm
131 Nede34b09cfc24eefb77585852b2905ef rdf:first sg:person.013117404317.63
132 rdf:rest Nb77c8b533a1c46b08869991ff98c9206
133 Nef1d50492b6d4ac08b455677edbfbac8 rdf:first sg:person.01230144105.36
134 rdf:rest rdf:nil
135 Nf33778600b8c493eac55a5de40678f88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Mammary Glands, Human
137 rdf:type schema:DefinedTerm
138 Nfc9233f5fc3744f589accacf39919ac3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Prognosis
140 rdf:type schema:DefinedTerm
141 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
142 schema:name Medical and Health Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
145 schema:name Public Health and Health Services
146 rdf:type schema:DefinedTerm
147 sg:journal.1017082 schema:issn 0007-0920
148 1532-1827
149 schema:name British Journal of Cancer
150 rdf:type schema:Periodical
151 sg:person.01010701573.25 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
152 schema:familyName Hall
153 schema:givenName P
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010701573.25
155 rdf:type schema:Person
156 sg:person.01133030564.09 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
157 schema:familyName Sovio
158 schema:givenName U
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133030564.09
160 rdf:type schema:Person
161 sg:person.011611703032.94 schema:affiliation https://www.grid.ac/institutes/grid.4868.2
162 schema:familyName Moss
163 schema:givenName S
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611703032.94
165 rdf:type schema:Person
166 sg:person.01230144105.36 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
167 schema:familyName dos-Santos-Silva
168 schema:givenName I
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230144105.36
170 rdf:type schema:Person
171 sg:person.01257257074.20 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
172 schema:familyName Aitken
173 schema:givenName Z
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257257074.20
175 rdf:type schema:Person
176 sg:person.013117404317.63 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
177 schema:familyName Czene
178 schema:givenName K
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117404317.63
180 rdf:type schema:Person
181 sg:person.01367601343.61 schema:affiliation https://www.grid.ac/institutes/grid.17703.32
182 schema:familyName McCormack
183 schema:givenName V
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367601343.61
185 rdf:type schema:Person
186 sg:person.013760043547.76 schema:affiliation https://www.grid.ac/institutes/grid.418377.e
187 schema:familyName Li
188 schema:givenName J
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76
190 rdf:type schema:Person
191 sg:person.0624052041.17 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
192 schema:familyName Humphreys
193 schema:givenName K
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624052041.17
195 rdf:type schema:Person
196 sg:pub.10.1186/bcr1829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020053537
197 https://doi.org/10.1186/bcr1829
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/bcr3238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829229
200 https://doi.org/10.1186/bcr3238
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0140-6736(06)69834-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049442125
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0140-6736(12)61228-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028739720
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0140-6736(12)61611-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010347035
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1056/nejmoa062790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022154822
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1088/0031-9155/39/10/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022537
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1088/0031-9155/56/9/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029149
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/jnci/djs254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050861007
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1118/1.1539038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023986662
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1136/jms.6.3.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062818254
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1158/1055-9965.epi-05-0824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012670200
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1158/1055-9965.epi-06-0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049006559
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1158/1055-9965.epi-07-0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042918440
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1158/1055-9965.epi-08-0170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047940693
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1158/1055-9965.epi-09-1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040449857
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1158/1055-9965.epi-10-1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006543075
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.17703.32 schema:alternateName International Agency For Research On Cancer
233 schema:name Environment and Radiation Section, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon, France
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.418377.e schema:alternateName Genome Institute of Singapore
236 schema:name Human Genetics Lab, Genome Institute of Singapore, 60 Biopolis Street, 02-01, Singapore 138672, Singapore
237 Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
240 schema:name Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, Stockholm 17177, Sweden
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.4868.2 schema:alternateName Queen Mary University of London
243 schema:name Centre for Cancer Prevention, Queen Mary University of London, Wolfson Institute of Preventive Medicine, Charterhouse Square, London EC1M 6BQ, UK
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
246 schema:name Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...