Examining the technique of angiogenesis assessment in invasive breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-10

AUTHORS

L Martin, B Green, C Renshaw, D Lowe, P Rudland, S J Leinster, J Winstanley

ABSTRACT

The intensity of angiogenesis as measured by the density of microvessels has been reported to be associated with a poor prognosis in invasive breast cancer in some, but not all, studies. The reasons for these discrepancies may be variations in the methodologies used. The monoclonal antibody used to identify the microvessels, the number of high-density areas or 'hotspots' counted and the type of value taken for statistical analysis (highest count or mean count) have varied between the different studies. We have assessed which of the three commonly used monoclonal antibodies provides the best visualization of microvessels in invasive breast cancer and have used methods that give reproducible data for the optimum number of 'hotspots' to count for each reagent. Thus, microvessels in formalin-fixed paraffin-embedded specimens from 174 primary breast cancers were immunohistochemically stained with monoclonal antibodies to FVIIIRAg, CD31 and CD34 and ten fields counted at 200 x magnification for each antibody. The highest count and the mean value of the highest of three, five and ten counts were used to examine the relationship between the density of microvessels and overall survival of patients with a median follow-up time of 7.1 years. Antibodies to CD31 and CD34 identified more vessels than antibodies to FVIIIRAg (median highest count per mm2: CD31 = 100, CD34 = 100, FVIIIRAg = 81). The monoclonal antibody to CD31, however, was the least reliable antibody, immunohistochemically staining only 87% of sections compared with 98% for the monoclonal to CD34 and 99% for the monoclonal to FVIIIRAg. There was a high degree of correlation between the number of vessels stained by the different antibodies, though there were some considerable differences in actual counts for serial sections of the same specimen stained by the different antibodies. Patients could be divided into two groups corresponding to those with high microvessel densities and those with low microvessel densities. Using Kaplan-Meier survival curves, there was a close association for all three antibodies between vessel density and survival whichever method of recording the highest vessel densities was used. Using log-rank tests and Cox's regression analysis, anti-CD34 gave the most significant results of the three antibodies, whereas a simple cut-off at the 75th percentile for the high and low groups produced the best association with patient survival. For anti-CD34 the highest microvessel density (P = 0.0014) and the mean value of the highest three microvessel densities (P = 0.004) showed a good correlation with patient death, whereas for anti-CD31 (P = 0.008) and anti-FVIIIRAg (P = 0.007) the highest count gave the best correlation using Cox's regression analysis. More... »

PAGES

bjc1997506

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/bjc.1997.506

DOI

http://dx.doi.org/10.1038/bjc.1997.506

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029714427

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9376265


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endothelium, Vascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neovascularization, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Liverpool", 
          "id": "https://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Surgery, University of Liverpool, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "L", 
        "id": "sg:person.01341774061.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341774061.01"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Green", 
        "givenName": "B", 
        "id": "sg:person.01323521450.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323521450.08"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Renshaw", 
        "givenName": "C", 
        "id": "sg:person.0646307535.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646307535.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lowe", 
        "givenName": "D", 
        "type": "Person"
      }, 
      {
        "familyName": "Rudland", 
        "givenName": "P", 
        "id": "sg:person.01222337452.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222337452.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Leinster", 
        "givenName": "S J", 
        "id": "sg:person.01011337043.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011337043.05"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Winstanley", 
        "givenName": "J", 
        "id": "sg:person.0746553231.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746553231.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00666041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811212", 
          "https://doi.org/10.1007/bf00666041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811212", 
          "https://doi.org/10.1007/bf00666041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcp/92.2.241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004120033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcp/75.2.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007911874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008276701", 
          "https://doi.org/10.1007/bf00666186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008276701", 
          "https://doi.org/10.1007/bf00666186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1995.tb00647.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008728306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1995.tb00647.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008728306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009706759", 
          "https://doi.org/10.1038/bjc.1995.251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009706759", 
          "https://doi.org/10.1038/bjc.1995.251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93150-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012584461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93150-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012584461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1990.tb00713.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015234873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1990.tb00713.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015234873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-7404(92)90068-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017940108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199101033240101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0046-8177(92)90344-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021450931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(05)80304-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024517814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1711770310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026692248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1711770310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026692248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/29.4.6166661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029463505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/29.4.6166661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029463505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jcp.43.9.752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030546454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93217-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032672881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93217-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032672881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0046-8177(95)90193-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033774702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(96)00379-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039011725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.2910550507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044416818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01920206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047458111", 
          "https://doi.org/10.1007/bf01920206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01920206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047458111", 
          "https://doi.org/10.1007/bf01920206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.2910550305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047657143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jcp.37.4.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047993374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/82.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051237830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-198609000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053182405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-198609000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053182405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/84.24.1875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059817645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/87.13.997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059819381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1690453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062500818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077289535", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079603299", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1994.12.3.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082392047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082850228", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-10", 
    "datePublishedReg": "1997-10-01", 
    "description": "The intensity of angiogenesis as measured by the density of microvessels has been reported to be associated with a poor prognosis in invasive breast cancer in some, but not all, studies. The reasons for these discrepancies may be variations in the methodologies used. The monoclonal antibody used to identify the microvessels, the number of high-density areas or 'hotspots' counted and the type of value taken for statistical analysis (highest count or mean count) have varied between the different studies. We have assessed which of the three commonly used monoclonal antibodies provides the best visualization of microvessels in invasive breast cancer and have used methods that give reproducible data for the optimum number of 'hotspots' to count for each reagent. Thus, microvessels in formalin-fixed paraffin-embedded specimens from 174 primary breast cancers were immunohistochemically stained with monoclonal antibodies to FVIIIRAg, CD31 and CD34 and ten fields counted at 200 x magnification for each antibody. The highest count and the mean value of the highest of three, five and ten counts were used to examine the relationship between the density of microvessels and overall survival of patients with a median follow-up time of 7.1 years. Antibodies to CD31 and CD34 identified more vessels than antibodies to FVIIIRAg (median highest count per mm2: CD31 = 100, CD34 = 100, FVIIIRAg = 81). The monoclonal antibody to CD31, however, was the least reliable antibody, immunohistochemically staining only 87% of sections compared with 98% for the monoclonal to CD34 and 99% for the monoclonal to FVIIIRAg. There was a high degree of correlation between the number of vessels stained by the different antibodies, though there were some considerable differences in actual counts for serial sections of the same specimen stained by the different antibodies. Patients could be divided into two groups corresponding to those with high microvessel densities and those with low microvessel densities. Using Kaplan-Meier survival curves, there was a close association for all three antibodies between vessel density and survival whichever method of recording the highest vessel densities was used. Using log-rank tests and Cox's regression analysis, anti-CD34 gave the most significant results of the three antibodies, whereas a simple cut-off at the 75th percentile for the high and low groups produced the best association with patient survival. For anti-CD34 the highest microvessel density (P = 0.0014) and the mean value of the highest three microvessel densities (P = 0.004) showed a good correlation with patient death, whereas for anti-CD31 (P = 0.008) and anti-FVIIIRAg (P = 0.007) the highest count gave the best correlation using Cox's regression analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/bjc.1997.506", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017082", 
        "issn": [
          "0007-0920", 
          "1532-1827"
        ], 
        "name": "British Journal of Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "Examining the technique of angiogenesis assessment in invasive breast cancer", 
    "pagination": "bjc1997506", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d8de848b775385047a68e27c50869d8cc6b295c0dfa7c8154dd2c6e13404976"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9376265"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0370635"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/bjc.1997.506"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029714427"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/bjc.1997.506", 
      "https://app.dimensions.ai/details/publication/pub.1029714427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54008_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/bjc1997506"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      74 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/bjc.1997.506 schema:about N0970c70f419843878508ed50b8b98544
2 N238e7be23fd24f3b9caf1eee0e839f19
3 N2926a54616cf458683e0dcad865d6c27
4 N375a8ce93fc1452e99af6fc730803c8f
5 N3c9a4041250043c48b77b8b65e185d66
6 N3d18d81b35d342d996d8b6bb5c3525ca
7 N73d9fde0918a411c88d4acf9be812e60
8 N783e6419c2b941a6a289df07d7e038ad
9 N7a130f0c4211440392145aa9c7d0fa57
10 N9744d15b9afb45178b92c42a6737967d
11 Nb06d5d42e4704574b936076e760e0ba8
12 Nb4bf659c24f148f6be8975dc8cfbf092
13 Nc0197214cea349bda8ca70af07f49b07
14 Nd55d72af632848cc8b22d9cca4259539
15 anzsrc-for:11
16 anzsrc-for:1112
17 schema:author N5c661d83f0b64a5bbf044b567d27f5ea
18 schema:citation sg:pub.10.1007/bf00666041
19 sg:pub.10.1007/bf00666186
20 sg:pub.10.1007/bf01920206
21 sg:pub.10.1038/bjc.1995.251
22 https://app.dimensions.ai/details/publication/pub.1077289535
23 https://app.dimensions.ai/details/publication/pub.1079603299
24 https://app.dimensions.ai/details/publication/pub.1082850228
25 https://doi.org/10.1002/ijc.2910550305
26 https://doi.org/10.1002/ijc.2910550507
27 https://doi.org/10.1002/path.1711770310
28 https://doi.org/10.1016/0046-8177(92)90344-3
29 https://doi.org/10.1016/0046-8177(95)90193-0
30 https://doi.org/10.1016/0140-6736(92)93150-l
31 https://doi.org/10.1016/0140-6736(92)93217-b
32 https://doi.org/10.1016/0960-7404(92)90068-v
33 https://doi.org/10.1016/s0959-8049(05)80304-1
34 https://doi.org/10.1016/s0959-8049(96)00379-6
35 https://doi.org/10.1056/nejm199101033240101
36 https://doi.org/10.1093/ajcp/75.2.167
37 https://doi.org/10.1093/ajcp/92.2.241
38 https://doi.org/10.1093/jnci/82.1.4
39 https://doi.org/10.1093/jnci/84.24.1875
40 https://doi.org/10.1093/jnci/87.13.997
41 https://doi.org/10.1097/00000478-198609000-00001
42 https://doi.org/10.1111/j.1365-2559.1990.tb00713.x
43 https://doi.org/10.1111/j.1365-2559.1995.tb00647.x
44 https://doi.org/10.1126/science.1690453
45 https://doi.org/10.1136/jcp.37.4.364
46 https://doi.org/10.1136/jcp.43.9.752
47 https://doi.org/10.1177/29.4.6166661
48 https://doi.org/10.1200/jco.1994.12.3.454
49 schema:datePublished 1997-10
50 schema:datePublishedReg 1997-10-01
51 schema:description The intensity of angiogenesis as measured by the density of microvessels has been reported to be associated with a poor prognosis in invasive breast cancer in some, but not all, studies. The reasons for these discrepancies may be variations in the methodologies used. The monoclonal antibody used to identify the microvessels, the number of high-density areas or 'hotspots' counted and the type of value taken for statistical analysis (highest count or mean count) have varied between the different studies. We have assessed which of the three commonly used monoclonal antibodies provides the best visualization of microvessels in invasive breast cancer and have used methods that give reproducible data for the optimum number of 'hotspots' to count for each reagent. Thus, microvessels in formalin-fixed paraffin-embedded specimens from 174 primary breast cancers were immunohistochemically stained with monoclonal antibodies to FVIIIRAg, CD31 and CD34 and ten fields counted at 200 x magnification for each antibody. The highest count and the mean value of the highest of three, five and ten counts were used to examine the relationship between the density of microvessels and overall survival of patients with a median follow-up time of 7.1 years. Antibodies to CD31 and CD34 identified more vessels than antibodies to FVIIIRAg (median highest count per mm2: CD31 = 100, CD34 = 100, FVIIIRAg = 81). The monoclonal antibody to CD31, however, was the least reliable antibody, immunohistochemically staining only 87% of sections compared with 98% for the monoclonal to CD34 and 99% for the monoclonal to FVIIIRAg. There was a high degree of correlation between the number of vessels stained by the different antibodies, though there were some considerable differences in actual counts for serial sections of the same specimen stained by the different antibodies. Patients could be divided into two groups corresponding to those with high microvessel densities and those with low microvessel densities. Using Kaplan-Meier survival curves, there was a close association for all three antibodies between vessel density and survival whichever method of recording the highest vessel densities was used. Using log-rank tests and Cox's regression analysis, anti-CD34 gave the most significant results of the three antibodies, whereas a simple cut-off at the 75th percentile for the high and low groups produced the best association with patient survival. For anti-CD34 the highest microvessel density (P = 0.0014) and the mean value of the highest three microvessel densities (P = 0.004) showed a good correlation with patient death, whereas for anti-CD31 (P = 0.008) and anti-FVIIIRAg (P = 0.007) the highest count gave the best correlation using Cox's regression analysis.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N8c9e38cfc0f84ab1bfeadf19316b7d55
56 Nf8a11f515ed64ad9bb97ccd046fe4f80
57 sg:journal.1017082
58 schema:name Examining the technique of angiogenesis assessment in invasive breast cancer
59 schema:pagination bjc1997506
60 schema:productId N45947542dd60412eaefba3f1ac0caf32
61 N704e052253204dab9c4591679ae37aab
62 N965cc67324004ae98cd355304f14c35a
63 Nb936ca9198a246f2ac43e64f775a4df3
64 Ned7147d03d6d4f988cda651522d77158
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029714427
66 https://doi.org/10.1038/bjc.1997.506
67 schema:sdDatePublished 2019-04-11T12:14
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N9d11eeb490ab4d438c578baa06e6be33
70 schema:url http://www.nature.com/articles/bjc1997506
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N01378f263ff345b4b3159b32da5c90cf schema:familyName Lowe
75 schema:givenName D
76 rdf:type schema:Person
77 N01f5552925414a6f9e1144f0021b3863 rdf:first sg:person.01222337452.23
78 rdf:rest N8e17ca6c17a6453486810876c0cfe3bb
79 N0970c70f419843878508ed50b8b98544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Multivariate Analysis
81 rdf:type schema:DefinedTerm
82 N238e7be23fd24f3b9caf1eee0e839f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Middle Aged
84 rdf:type schema:DefinedTerm
85 N2926a54616cf458683e0dcad865d6c27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Reproducibility of Results
87 rdf:type schema:DefinedTerm
88 N34bf258595f04d0abf87b32c3ec8b40c rdf:first sg:person.0746553231.70
89 rdf:rest rdf:nil
90 N375a8ce93fc1452e99af6fc730803c8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Prognosis
92 rdf:type schema:DefinedTerm
93 N3c9a4041250043c48b77b8b65e185d66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Immunohistochemistry
95 rdf:type schema:DefinedTerm
96 N3d18d81b35d342d996d8b6bb5c3525ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Adolescent
98 rdf:type schema:DefinedTerm
99 N45947542dd60412eaefba3f1ac0caf32 schema:name nlm_unique_id
100 schema:value 0370635
101 rdf:type schema:PropertyValue
102 N5c661d83f0b64a5bbf044b567d27f5ea rdf:first sg:person.01341774061.01
103 rdf:rest Nfd3fe59c4f54409c9a366f09e79ccb1d
104 N704e052253204dab9c4591679ae37aab schema:name readcube_id
105 schema:value 8d8de848b775385047a68e27c50869d8cc6b295c0dfa7c8154dd2c6e13404976
106 rdf:type schema:PropertyValue
107 N73d9fde0918a411c88d4acf9be812e60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Aged
109 rdf:type schema:DefinedTerm
110 N783e6419c2b941a6a289df07d7e038ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Adult
112 rdf:type schema:DefinedTerm
113 N7a130f0c4211440392145aa9c7d0fa57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Breast Neoplasms
115 rdf:type schema:DefinedTerm
116 N8c9e38cfc0f84ab1bfeadf19316b7d55 schema:issueNumber 8
117 rdf:type schema:PublicationIssue
118 N8e17ca6c17a6453486810876c0cfe3bb rdf:first sg:person.01011337043.05
119 rdf:rest N34bf258595f04d0abf87b32c3ec8b40c
120 N965cc67324004ae98cd355304f14c35a schema:name doi
121 schema:value 10.1038/bjc.1997.506
122 rdf:type schema:PropertyValue
123 N9744d15b9afb45178b92c42a6737967d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 N9d11eeb490ab4d438c578baa06e6be33 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nb06d5d42e4704574b936076e760e0ba8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Endothelium, Vascular
130 rdf:type schema:DefinedTerm
131 Nb4bf659c24f148f6be8975dc8cfbf092 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Neovascularization, Pathologic
133 rdf:type schema:DefinedTerm
134 Nb936ca9198a246f2ac43e64f775a4df3 schema:name pubmed_id
135 schema:value 9376265
136 rdf:type schema:PropertyValue
137 Nc0197214cea349bda8ca70af07f49b07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Antibodies, Monoclonal
139 rdf:type schema:DefinedTerm
140 Nd55d72af632848cc8b22d9cca4259539 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Female
142 rdf:type schema:DefinedTerm
143 Ne74025ea8dd64d159e25149a43ac85c9 rdf:first sg:person.0646307535.14
144 rdf:rest Ne778ffc9026f4edcae671fd05910eecd
145 Ne778ffc9026f4edcae671fd05910eecd rdf:first N01378f263ff345b4b3159b32da5c90cf
146 rdf:rest N01f5552925414a6f9e1144f0021b3863
147 Ned7147d03d6d4f988cda651522d77158 schema:name dimensions_id
148 schema:value pub.1029714427
149 rdf:type schema:PropertyValue
150 Nf8a11f515ed64ad9bb97ccd046fe4f80 schema:volumeNumber 76
151 rdf:type schema:PublicationVolume
152 Nfd3fe59c4f54409c9a366f09e79ccb1d rdf:first sg:person.01323521450.08
153 rdf:rest Ne74025ea8dd64d159e25149a43ac85c9
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
158 schema:name Oncology and Carcinogenesis
159 rdf:type schema:DefinedTerm
160 sg:journal.1017082 schema:issn 0007-0920
161 1532-1827
162 schema:name British Journal of Cancer
163 rdf:type schema:Periodical
164 sg:person.01011337043.05 schema:familyName Leinster
165 schema:givenName S J
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011337043.05
167 rdf:type schema:Person
168 sg:person.01222337452.23 schema:familyName Rudland
169 schema:givenName P
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222337452.23
171 rdf:type schema:Person
172 sg:person.01323521450.08 schema:familyName Green
173 schema:givenName B
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323521450.08
175 rdf:type schema:Person
176 sg:person.01341774061.01 schema:affiliation https://www.grid.ac/institutes/grid.10025.36
177 schema:familyName Martin
178 schema:givenName L
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341774061.01
180 rdf:type schema:Person
181 sg:person.0646307535.14 schema:familyName Renshaw
182 schema:givenName C
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646307535.14
184 rdf:type schema:Person
185 sg:person.0746553231.70 schema:familyName Winstanley
186 schema:givenName J
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746553231.70
188 rdf:type schema:Person
189 sg:pub.10.1007/bf00666041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000811212
190 https://doi.org/10.1007/bf00666041
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/bf00666186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008276701
193 https://doi.org/10.1007/bf00666186
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf01920206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047458111
196 https://doi.org/10.1007/bf01920206
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/bjc.1995.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009706759
199 https://doi.org/10.1038/bjc.1995.251
200 rdf:type schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1077289535 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1079603299 schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1082850228 schema:CreativeWork
204 https://doi.org/10.1002/ijc.2910550305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047657143
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/ijc.2910550507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044416818
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/path.1711770310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026692248
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/0046-8177(92)90344-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021450931
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0046-8177(95)90193-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033774702
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/0140-6736(92)93150-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1012584461
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/0140-6736(92)93217-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1032672881
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/0960-7404(92)90068-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1017940108
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0959-8049(05)80304-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024517814
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0959-8049(96)00379-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039011725
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1056/nejm199101033240101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913678
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/ajcp/75.2.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007911874
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/ajcp/92.2.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004120033
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/jnci/82.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051237830
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/jnci/84.24.1875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059817645
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/jnci/87.13.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059819381
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/00000478-198609000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053182405
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1111/j.1365-2559.1990.tb00713.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015234873
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1365-2559.1995.tb00647.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008728306
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1690453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062500818
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1136/jcp.37.4.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047993374
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1136/jcp.43.9.752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030546454
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1177/29.4.6166661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029463505
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1200/jco.1994.12.3.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082392047
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.10025.36 schema:alternateName University of Liverpool
253 schema:name Department of Surgery, University of Liverpool, UK.
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...