Examining the technique of angiogenesis assessment in invasive breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-10

AUTHORS

L Martin, B Green, C Renshaw, D Lowe, P Rudland, S J Leinster, J Winstanley

ABSTRACT

The intensity of angiogenesis as measured by the density of microvessels has been reported to be associated with a poor prognosis in invasive breast cancer in some, but not all, studies. The reasons for these discrepancies may be variations in the methodologies used. The monoclonal antibody used to identify the microvessels, the number of high-density areas or 'hotspots' counted and the type of value taken for statistical analysis (highest count or mean count) have varied between the different studies. We have assessed which of the three commonly used monoclonal antibodies provides the best visualization of microvessels in invasive breast cancer and have used methods that give reproducible data for the optimum number of 'hotspots' to count for each reagent. Thus, microvessels in formalin-fixed paraffin-embedded specimens from 174 primary breast cancers were immunohistochemically stained with monoclonal antibodies to FVIIIRAg, CD31 and CD34 and ten fields counted at 200 x magnification for each antibody. The highest count and the mean value of the highest of three, five and ten counts were used to examine the relationship between the density of microvessels and overall survival of patients with a median follow-up time of 7.1 years. Antibodies to CD31 and CD34 identified more vessels than antibodies to FVIIIRAg (median highest count per mm2: CD31 = 100, CD34 = 100, FVIIIRAg = 81). The monoclonal antibody to CD31, however, was the least reliable antibody, immunohistochemically staining only 87% of sections compared with 98% for the monoclonal to CD34 and 99% for the monoclonal to FVIIIRAg. There was a high degree of correlation between the number of vessels stained by the different antibodies, though there were some considerable differences in actual counts for serial sections of the same specimen stained by the different antibodies. Patients could be divided into two groups corresponding to those with high microvessel densities and those with low microvessel densities. Using Kaplan-Meier survival curves, there was a close association for all three antibodies between vessel density and survival whichever method of recording the highest vessel densities was used. Using log-rank tests and Cox's regression analysis, anti-CD34 gave the most significant results of the three antibodies, whereas a simple cut-off at the 75th percentile for the high and low groups produced the best association with patient survival. For anti-CD34 the highest microvessel density (P = 0.0014) and the mean value of the highest three microvessel densities (P = 0.004) showed a good correlation with patient death, whereas for anti-CD31 (P = 0.008) and anti-FVIIIRAg (P = 0.007) the highest count gave the best correlation using Cox's regression analysis. More... »

PAGES

bjc1997506

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/bjc.1997.506

DOI

http://dx.doi.org/10.1038/bjc.1997.506

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029714427

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9376265


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endothelium, Vascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neovascularization, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Liverpool", 
          "id": "https://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Surgery, University of Liverpool, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "L", 
        "id": "sg:person.01341774061.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341774061.01"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Green", 
        "givenName": "B", 
        "id": "sg:person.01323521450.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323521450.08"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Renshaw", 
        "givenName": "C", 
        "id": "sg:person.0646307535.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646307535.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lowe", 
        "givenName": "D", 
        "type": "Person"
      }, 
      {
        "familyName": "Rudland", 
        "givenName": "P", 
        "id": "sg:person.01222337452.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222337452.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Leinster", 
        "givenName": "S J", 
        "id": "sg:person.01011337043.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011337043.05"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Winstanley", 
        "givenName": "J", 
        "id": "sg:person.0746553231.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746553231.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00666041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811212", 
          "https://doi.org/10.1007/bf00666041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811212", 
          "https://doi.org/10.1007/bf00666041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcp/92.2.241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004120033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcp/75.2.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007911874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008276701", 
          "https://doi.org/10.1007/bf00666186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008276701", 
          "https://doi.org/10.1007/bf00666186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1995.tb00647.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008728306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1995.tb00647.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008728306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009706759", 
          "https://doi.org/10.1038/bjc.1995.251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009706759", 
          "https://doi.org/10.1038/bjc.1995.251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93150-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012584461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93150-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012584461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1990.tb00713.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015234873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.1990.tb00713.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015234873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-7404(92)90068-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017940108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199101033240101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0046-8177(92)90344-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021450931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(05)80304-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024517814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1711770310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026692248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1711770310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026692248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/29.4.6166661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029463505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/29.4.6166661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029463505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jcp.43.9.752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030546454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93217-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032672881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93217-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032672881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0046-8177(95)90193-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033774702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(96)00379-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039011725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.2910550507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044416818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01920206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047458111", 
          "https://doi.org/10.1007/bf01920206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01920206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047458111", 
          "https://doi.org/10.1007/bf01920206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.2910550305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047657143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jcp.37.4.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047993374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/82.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051237830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-198609000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053182405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-198609000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053182405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/84.24.1875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059817645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/87.13.997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059819381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1690453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062500818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077289535", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079603299", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1994.12.3.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082392047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082850228", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-10", 
    "datePublishedReg": "1997-10-01", 
    "description": "The intensity of angiogenesis as measured by the density of microvessels has been reported to be associated with a poor prognosis in invasive breast cancer in some, but not all, studies. The reasons for these discrepancies may be variations in the methodologies used. The monoclonal antibody used to identify the microvessels, the number of high-density areas or 'hotspots' counted and the type of value taken for statistical analysis (highest count or mean count) have varied between the different studies. We have assessed which of the three commonly used monoclonal antibodies provides the best visualization of microvessels in invasive breast cancer and have used methods that give reproducible data for the optimum number of 'hotspots' to count for each reagent. Thus, microvessels in formalin-fixed paraffin-embedded specimens from 174 primary breast cancers were immunohistochemically stained with monoclonal antibodies to FVIIIRAg, CD31 and CD34 and ten fields counted at 200 x magnification for each antibody. The highest count and the mean value of the highest of three, five and ten counts were used to examine the relationship between the density of microvessels and overall survival of patients with a median follow-up time of 7.1 years. Antibodies to CD31 and CD34 identified more vessels than antibodies to FVIIIRAg (median highest count per mm2: CD31 = 100, CD34 = 100, FVIIIRAg = 81). The monoclonal antibody to CD31, however, was the least reliable antibody, immunohistochemically staining only 87% of sections compared with 98% for the monoclonal to CD34 and 99% for the monoclonal to FVIIIRAg. There was a high degree of correlation between the number of vessels stained by the different antibodies, though there were some considerable differences in actual counts for serial sections of the same specimen stained by the different antibodies. Patients could be divided into two groups corresponding to those with high microvessel densities and those with low microvessel densities. Using Kaplan-Meier survival curves, there was a close association for all three antibodies between vessel density and survival whichever method of recording the highest vessel densities was used. Using log-rank tests and Cox's regression analysis, anti-CD34 gave the most significant results of the three antibodies, whereas a simple cut-off at the 75th percentile for the high and low groups produced the best association with patient survival. For anti-CD34 the highest microvessel density (P = 0.0014) and the mean value of the highest three microvessel densities (P = 0.004) showed a good correlation with patient death, whereas for anti-CD31 (P = 0.008) and anti-FVIIIRAg (P = 0.007) the highest count gave the best correlation using Cox's regression analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/bjc.1997.506", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017082", 
        "issn": [
          "0007-0920", 
          "1532-1827"
        ], 
        "name": "British Journal of Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "Examining the technique of angiogenesis assessment in invasive breast cancer", 
    "pagination": "bjc1997506", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d8de848b775385047a68e27c50869d8cc6b295c0dfa7c8154dd2c6e13404976"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9376265"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0370635"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/bjc.1997.506"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029714427"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/bjc.1997.506", 
      "https://app.dimensions.ai/details/publication/pub.1029714427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54008_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/bjc1997506"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/bjc.1997.506'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      74 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/bjc.1997.506 schema:about N0f8b3f2464d04a64ab9999b18ba0fd37
2 N18cea2471b914508a99b9c2ed2505834
3 N416272c3cb334bc7bd1a31bcd5d7a609
4 N4b32bff151e843c7834d859e297f268b
5 N7cba1c0bf158478e887ff54c995c587e
6 Na81e89a849274fc68dff121ef53e6175
7 Nba3d998a54a84f588a46ae9908af3ddc
8 Nbd7244cb9fff4025aecc6478680f2718
9 Nca5417d7e2f24a998ed4a3d8efa12f19
10 Ncde7fae1a9464895886f6fe6ee7239bf
11 Nd7a0b80a0cc84db5a1d61c4303a4ac80
12 Nda7006f204d94ad796a0bb2c7c4dc7f2
13 Nde9a0618889e48cbbcaf60173112ed64
14 Ne07ec64aaa0240c1b8c408d21ac5d789
15 anzsrc-for:11
16 anzsrc-for:1112
17 schema:author Ne78fcf34d99d4c5f9ff67c384f049eb3
18 schema:citation sg:pub.10.1007/bf00666041
19 sg:pub.10.1007/bf00666186
20 sg:pub.10.1007/bf01920206
21 sg:pub.10.1038/bjc.1995.251
22 https://app.dimensions.ai/details/publication/pub.1077289535
23 https://app.dimensions.ai/details/publication/pub.1079603299
24 https://app.dimensions.ai/details/publication/pub.1082850228
25 https://doi.org/10.1002/ijc.2910550305
26 https://doi.org/10.1002/ijc.2910550507
27 https://doi.org/10.1002/path.1711770310
28 https://doi.org/10.1016/0046-8177(92)90344-3
29 https://doi.org/10.1016/0046-8177(95)90193-0
30 https://doi.org/10.1016/0140-6736(92)93150-l
31 https://doi.org/10.1016/0140-6736(92)93217-b
32 https://doi.org/10.1016/0960-7404(92)90068-v
33 https://doi.org/10.1016/s0959-8049(05)80304-1
34 https://doi.org/10.1016/s0959-8049(96)00379-6
35 https://doi.org/10.1056/nejm199101033240101
36 https://doi.org/10.1093/ajcp/75.2.167
37 https://doi.org/10.1093/ajcp/92.2.241
38 https://doi.org/10.1093/jnci/82.1.4
39 https://doi.org/10.1093/jnci/84.24.1875
40 https://doi.org/10.1093/jnci/87.13.997
41 https://doi.org/10.1097/00000478-198609000-00001
42 https://doi.org/10.1111/j.1365-2559.1990.tb00713.x
43 https://doi.org/10.1111/j.1365-2559.1995.tb00647.x
44 https://doi.org/10.1126/science.1690453
45 https://doi.org/10.1136/jcp.37.4.364
46 https://doi.org/10.1136/jcp.43.9.752
47 https://doi.org/10.1177/29.4.6166661
48 https://doi.org/10.1200/jco.1994.12.3.454
49 schema:datePublished 1997-10
50 schema:datePublishedReg 1997-10-01
51 schema:description The intensity of angiogenesis as measured by the density of microvessels has been reported to be associated with a poor prognosis in invasive breast cancer in some, but not all, studies. The reasons for these discrepancies may be variations in the methodologies used. The monoclonal antibody used to identify the microvessels, the number of high-density areas or 'hotspots' counted and the type of value taken for statistical analysis (highest count or mean count) have varied between the different studies. We have assessed which of the three commonly used monoclonal antibodies provides the best visualization of microvessels in invasive breast cancer and have used methods that give reproducible data for the optimum number of 'hotspots' to count for each reagent. Thus, microvessels in formalin-fixed paraffin-embedded specimens from 174 primary breast cancers were immunohistochemically stained with monoclonal antibodies to FVIIIRAg, CD31 and CD34 and ten fields counted at 200 x magnification for each antibody. The highest count and the mean value of the highest of three, five and ten counts were used to examine the relationship between the density of microvessels and overall survival of patients with a median follow-up time of 7.1 years. Antibodies to CD31 and CD34 identified more vessels than antibodies to FVIIIRAg (median highest count per mm2: CD31 = 100, CD34 = 100, FVIIIRAg = 81). The monoclonal antibody to CD31, however, was the least reliable antibody, immunohistochemically staining only 87% of sections compared with 98% for the monoclonal to CD34 and 99% for the monoclonal to FVIIIRAg. There was a high degree of correlation between the number of vessels stained by the different antibodies, though there were some considerable differences in actual counts for serial sections of the same specimen stained by the different antibodies. Patients could be divided into two groups corresponding to those with high microvessel densities and those with low microvessel densities. Using Kaplan-Meier survival curves, there was a close association for all three antibodies between vessel density and survival whichever method of recording the highest vessel densities was used. Using log-rank tests and Cox's regression analysis, anti-CD34 gave the most significant results of the three antibodies, whereas a simple cut-off at the 75th percentile for the high and low groups produced the best association with patient survival. For anti-CD34 the highest microvessel density (P = 0.0014) and the mean value of the highest three microvessel densities (P = 0.004) showed a good correlation with patient death, whereas for anti-CD31 (P = 0.008) and anti-FVIIIRAg (P = 0.007) the highest count gave the best correlation using Cox's regression analysis.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N4765f9726fd54e7cbc8c3b7d8a188ca9
56 N6e62c95d5e4546d9a3baaca6e68773df
57 sg:journal.1017082
58 schema:name Examining the technique of angiogenesis assessment in invasive breast cancer
59 schema:pagination bjc1997506
60 schema:productId N3f2ec836b8ef4772a95ef1409e1004ac
61 N6e4d072f5e074859854b44438ed89e30
62 N9ee96768a0a64d45be63c6f93832903c
63 Na39345854dae467eabae024aa8e828b4
64 Na462c1205e654175bc6f8a611e0b64c8
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029714427
66 https://doi.org/10.1038/bjc.1997.506
67 schema:sdDatePublished 2019-04-11T12:14
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nfd89ca3f87a5477b809b26f68279ce3c
70 schema:url http://www.nature.com/articles/bjc1997506
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N068625f3c0c74bbbae6f0b314ff89e46 schema:familyName Lowe
75 schema:givenName D
76 rdf:type schema:Person
77 N0f8b3f2464d04a64ab9999b18ba0fd37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Female
79 rdf:type schema:DefinedTerm
80 N18cea2471b914508a99b9c2ed2505834 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Adult
82 rdf:type schema:DefinedTerm
83 N3f2ec836b8ef4772a95ef1409e1004ac schema:name dimensions_id
84 schema:value pub.1029714427
85 rdf:type schema:PropertyValue
86 N416272c3cb334bc7bd1a31bcd5d7a609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Multivariate Analysis
88 rdf:type schema:DefinedTerm
89 N4424e5f312304a8585a45d67db408dd6 rdf:first sg:person.01011337043.05
90 rdf:rest Nf852298ea987492bb971223026cdeb53
91 N4765f9726fd54e7cbc8c3b7d8a188ca9 schema:volumeNumber 76
92 rdf:type schema:PublicationVolume
93 N4b32bff151e843c7834d859e297f268b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Prognosis
95 rdf:type schema:DefinedTerm
96 N597cd31cab7f4d21907bbab41914a0fb rdf:first N068625f3c0c74bbbae6f0b314ff89e46
97 rdf:rest N8b22a87a613a414983dfcd893e360be0
98 N6e4d072f5e074859854b44438ed89e30 schema:name readcube_id
99 schema:value 8d8de848b775385047a68e27c50869d8cc6b295c0dfa7c8154dd2c6e13404976
100 rdf:type schema:PropertyValue
101 N6e62c95d5e4546d9a3baaca6e68773df schema:issueNumber 8
102 rdf:type schema:PublicationIssue
103 N73971f75da5d433b984176a9afc255e7 rdf:first sg:person.01323521450.08
104 rdf:rest Nc56b398ed52f4e5699a42e5c81765e6a
105 N7cba1c0bf158478e887ff54c995c587e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Adolescent
107 rdf:type schema:DefinedTerm
108 N8b22a87a613a414983dfcd893e360be0 rdf:first sg:person.01222337452.23
109 rdf:rest N4424e5f312304a8585a45d67db408dd6
110 N9ee96768a0a64d45be63c6f93832903c schema:name doi
111 schema:value 10.1038/bjc.1997.506
112 rdf:type schema:PropertyValue
113 Na39345854dae467eabae024aa8e828b4 schema:name pubmed_id
114 schema:value 9376265
115 rdf:type schema:PropertyValue
116 Na462c1205e654175bc6f8a611e0b64c8 schema:name nlm_unique_id
117 schema:value 0370635
118 rdf:type schema:PropertyValue
119 Na81e89a849274fc68dff121ef53e6175 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Immunohistochemistry
121 rdf:type schema:DefinedTerm
122 Nba3d998a54a84f588a46ae9908af3ddc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Humans
124 rdf:type schema:DefinedTerm
125 Nbd7244cb9fff4025aecc6478680f2718 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Antibodies, Monoclonal
127 rdf:type schema:DefinedTerm
128 Nc56b398ed52f4e5699a42e5c81765e6a rdf:first sg:person.0646307535.14
129 rdf:rest N597cd31cab7f4d21907bbab41914a0fb
130 Nca5417d7e2f24a998ed4a3d8efa12f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Aged
132 rdf:type schema:DefinedTerm
133 Ncde7fae1a9464895886f6fe6ee7239bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Breast Neoplasms
135 rdf:type schema:DefinedTerm
136 Nd7a0b80a0cc84db5a1d61c4303a4ac80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Reproducibility of Results
138 rdf:type schema:DefinedTerm
139 Nda7006f204d94ad796a0bb2c7c4dc7f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Endothelium, Vascular
141 rdf:type schema:DefinedTerm
142 Nde9a0618889e48cbbcaf60173112ed64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Middle Aged
144 rdf:type schema:DefinedTerm
145 Ne07ec64aaa0240c1b8c408d21ac5d789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Neovascularization, Pathologic
147 rdf:type schema:DefinedTerm
148 Ne78fcf34d99d4c5f9ff67c384f049eb3 rdf:first sg:person.01341774061.01
149 rdf:rest N73971f75da5d433b984176a9afc255e7
150 Nf852298ea987492bb971223026cdeb53 rdf:first sg:person.0746553231.70
151 rdf:rest rdf:nil
152 Nfd89ca3f87a5477b809b26f68279ce3c schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
158 schema:name Oncology and Carcinogenesis
159 rdf:type schema:DefinedTerm
160 sg:journal.1017082 schema:issn 0007-0920
161 1532-1827
162 schema:name British Journal of Cancer
163 rdf:type schema:Periodical
164 sg:person.01011337043.05 schema:familyName Leinster
165 schema:givenName S J
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011337043.05
167 rdf:type schema:Person
168 sg:person.01222337452.23 schema:familyName Rudland
169 schema:givenName P
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222337452.23
171 rdf:type schema:Person
172 sg:person.01323521450.08 schema:familyName Green
173 schema:givenName B
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323521450.08
175 rdf:type schema:Person
176 sg:person.01341774061.01 schema:affiliation https://www.grid.ac/institutes/grid.10025.36
177 schema:familyName Martin
178 schema:givenName L
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341774061.01
180 rdf:type schema:Person
181 sg:person.0646307535.14 schema:familyName Renshaw
182 schema:givenName C
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646307535.14
184 rdf:type schema:Person
185 sg:person.0746553231.70 schema:familyName Winstanley
186 schema:givenName J
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746553231.70
188 rdf:type schema:Person
189 sg:pub.10.1007/bf00666041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000811212
190 https://doi.org/10.1007/bf00666041
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/bf00666186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008276701
193 https://doi.org/10.1007/bf00666186
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf01920206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047458111
196 https://doi.org/10.1007/bf01920206
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/bjc.1995.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009706759
199 https://doi.org/10.1038/bjc.1995.251
200 rdf:type schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1077289535 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1079603299 schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1082850228 schema:CreativeWork
204 https://doi.org/10.1002/ijc.2910550305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047657143
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/ijc.2910550507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044416818
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/path.1711770310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026692248
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/0046-8177(92)90344-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021450931
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0046-8177(95)90193-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033774702
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/0140-6736(92)93150-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1012584461
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/0140-6736(92)93217-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1032672881
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/0960-7404(92)90068-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1017940108
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0959-8049(05)80304-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024517814
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0959-8049(96)00379-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039011725
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1056/nejm199101033240101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913678
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/ajcp/75.2.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007911874
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/ajcp/92.2.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004120033
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/jnci/82.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051237830
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/jnci/84.24.1875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059817645
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/jnci/87.13.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059819381
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/00000478-198609000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053182405
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1111/j.1365-2559.1990.tb00713.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015234873
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1365-2559.1995.tb00647.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008728306
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1690453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062500818
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1136/jcp.37.4.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047993374
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1136/jcp.43.9.752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030546454
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1177/29.4.6166661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029463505
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1200/jco.1994.12.3.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082392047
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.10025.36 schema:alternateName University of Liverpool
253 schema:name Department of Surgery, University of Liverpool, UK.
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...