Novel Chern insulators with half-metallic edge states View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-09

AUTHORS

Yang Xue, Bao Zhao, Yan Zhu, Tong Zhou, Jiayong Zhang, Ningbo Li, Hua Jiang, Zhongqin Yang

ABSTRACT

The central target of spintronics research is to achieve flexible control of highly efficient and spin-polarized electronic currents. Based on first-principles calculations and k·p models, we demonstrate that Cu2S/MnSe heterostructures are a novel type of Chern insulators with half-metallic chiral edge states and a very high Fermi velocity (0.87 × 106 m s−1). The full spin-polarization of the edge states is found to be robust against the tuning of the chemical potential. Unlike the mechanisms reported previously, this heterostructure has quadratic bands with a normal band order, that is, the p/d-like band is below the s-like band. Charge transfer between the Cu2S moiety and the substrate results in variation in the occupied bands, which together with spin–orbit coupling, triggers the appearance of the topological state in the system. These results imply that numerous ordinary semiconductors with normal band order may convert into Chern insulators with half-metallic chiral edge states through this mechanism, providing a strategy to find a rich variety of materials for dissipationless, 100% spin-polarized and high-speed spintronic devices. More... »

PAGES

e467-e467

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/am.2017.240

DOI

http://dx.doi.org/10.1038/am.2017.240

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100922161


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Yang", 
        "id": "sg:person.016267633614.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267633614.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Physical Science and Information Technology, Liaocheng University, Liaocheng, China", 
          "id": "http://www.grid.ac/institutes/grid.411351.3", 
          "name": [
            "College of Physical Science and Information Technology, Liaocheng University, Liaocheng, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Bao", 
        "id": "sg:person.01153027570.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153027570.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.07774025227.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Tong", 
        "id": "sg:person.013522035031.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522035031.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu, China", 
          "id": "http://www.grid.ac/institutes/grid.440652.1", 
          "name": [
            "Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jiayong", 
        "id": "sg:person.0755635715.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755635715.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ningbo", 
        "id": "sg:person.014674672614.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674672614.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Physics, Optoelectronics, and Energy, Soochow University, Suzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "College of Physics, Optoelectronics, and Energy, Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Hua", 
        "id": "sg:person.01213145215.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213145215.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhongqin", 
        "id": "sg:person.01044667306.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044667306.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-016-1384-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003157374", 
          "https://doi.org/10.1007/s12274-016-1384-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037725405", 
          "https://doi.org/10.1038/srep08426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep21723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024796164", 
          "https://doi.org/10.1038/srep21723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044729764", 
          "https://doi.org/10.1038/srep10629"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-09", 
    "datePublishedReg": "2018-02-09", 
    "description": "The central target of spintronics research is to achieve flexible control of highly efficient and spin-polarized electronic currents. Based on first-principles calculations and k\u00b7p models, we demonstrate that Cu2S/MnSe heterostructures are a novel type of Chern insulators with half-metallic chiral edge states and a very high Fermi velocity (0.87 \u00d7 106\u2009m\u2009s\u22121). The full spin-polarization of the edge states is found to be robust against the tuning of the chemical potential. Unlike the mechanisms reported previously, this heterostructure has quadratic bands with a normal band order, that is, the p/d-like band is below the s-like band. Charge transfer between the Cu2S moiety and the substrate results in variation in the occupied bands, which together with spin\u2013orbit coupling, triggers the appearance of the topological state in the system. These results imply that numerous ordinary semiconductors with normal band order may convert into Chern insulators with half-metallic chiral edge states through this mechanism, providing a strategy to find a rich variety of materials for dissipationless, 100% spin-polarized and high-speed spintronic devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/am.2017.240", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8124732", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053485", 
        "issn": [
          "1884-4049", 
          "1884-4057"
        ], 
        "name": "NPG Asia Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "chiral edge states", 
      "edge states", 
      "Chern insulators", 
      "normal band order", 
      "band order", 
      "spin-polarized electronic currents", 
      "high-speed spintronic devices", 
      "like bands", 
      "spin-orbit coupling", 
      "high Fermi velocity", 
      "first-principles calculations", 
      "ordinary semiconductors", 
      "topological states", 
      "Fermi velocity", 
      "quadratic band", 
      "spintronic devices", 
      "spintronics research", 
      "electronic current", 
      "insulator", 
      "chemical potential", 
      "charge transfer", 
      "heterostructures", 
      "rich variety", 
      "band", 
      "dissipationless", 
      "flexible control", 
      "semiconductors", 
      "state", 
      "novel type", 
      "coupling", 
      "calculations", 
      "tuning", 
      "devices", 
      "current", 
      "substrate", 
      "velocity", 
      "order", 
      "transfer", 
      "materials", 
      "potential", 
      "mechanism", 
      "target", 
      "system", 
      "variation", 
      "appearance", 
      "model", 
      "results", 
      "moiety", 
      "variety", 
      "types", 
      "control", 
      "central target", 
      "strategies", 
      "research"
    ], 
    "name": "Novel Chern insulators with half-metallic edge states", 
    "pagination": "e467-e467", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100922161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/am.2017.240"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/am.2017.240", 
      "https://app.dimensions.ai/details/publication/pub.1100922161"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_775.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/am.2017.240"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/am.2017.240'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/am.2017.240'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/am.2017.240'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/am.2017.240'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      82 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/am.2017.240 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd03845e91834465383b47e657384f9fc
4 schema:citation sg:pub.10.1007/s12274-016-1384-3
5 sg:pub.10.1038/srep08426
6 sg:pub.10.1038/srep10629
7 sg:pub.10.1038/srep21723
8 schema:datePublished 2018-02-09
9 schema:datePublishedReg 2018-02-09
10 schema:description The central target of spintronics research is to achieve flexible control of highly efficient and spin-polarized electronic currents. Based on first-principles calculations and k·p models, we demonstrate that Cu2S/MnSe heterostructures are a novel type of Chern insulators with half-metallic chiral edge states and a very high Fermi velocity (0.87 × 106 m s−1). The full spin-polarization of the edge states is found to be robust against the tuning of the chemical potential. Unlike the mechanisms reported previously, this heterostructure has quadratic bands with a normal band order, that is, the p/d-like band is below the s-like band. Charge transfer between the Cu2S moiety and the substrate results in variation in the occupied bands, which together with spin–orbit coupling, triggers the appearance of the topological state in the system. These results imply that numerous ordinary semiconductors with normal band order may convert into Chern insulators with half-metallic chiral edge states through this mechanism, providing a strategy to find a rich variety of materials for dissipationless, 100% spin-polarized and high-speed spintronic devices.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N4b702a7a6ecd4fe0b0252b20da3445e9
14 Nc650364cde564bee9d968026839ff295
15 sg:journal.1053485
16 schema:keywords Chern insulators
17 Fermi velocity
18 appearance
19 band
20 band order
21 calculations
22 central target
23 charge transfer
24 chemical potential
25 chiral edge states
26 control
27 coupling
28 current
29 devices
30 dissipationless
31 edge states
32 electronic current
33 first-principles calculations
34 flexible control
35 heterostructures
36 high Fermi velocity
37 high-speed spintronic devices
38 insulator
39 like bands
40 materials
41 mechanism
42 model
43 moiety
44 normal band order
45 novel type
46 order
47 ordinary semiconductors
48 potential
49 quadratic band
50 research
51 results
52 rich variety
53 semiconductors
54 spin-orbit coupling
55 spin-polarized electronic currents
56 spintronic devices
57 spintronics research
58 state
59 strategies
60 substrate
61 system
62 target
63 topological states
64 transfer
65 tuning
66 types
67 variation
68 variety
69 velocity
70 schema:name Novel Chern insulators with half-metallic edge states
71 schema:pagination e467-e467
72 schema:productId N86eb1ef7cb20465a88e61b2f224780b7
73 Ne6ce02e98fc34b59b7ef5ad362e64996
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100922161
75 https://doi.org/10.1038/am.2017.240
76 schema:sdDatePublished 2022-09-02T16:02
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N97f40a0857b141f6851e669a80efcfd2
79 schema:url https://doi.org/10.1038/am.2017.240
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1581ed5edca04da59f6f470e78b74ee3 rdf:first sg:person.07774025227.42
84 rdf:rest N49c2ea0373e8458bb2042f9c9239aa5f
85 N1fc29e07aa824cada2aec9e9118fa2f8 rdf:first sg:person.014674672614.48
86 rdf:rest Ne4f3798c91c94ee5bbd2cf58698f13a5
87 N49c2ea0373e8458bb2042f9c9239aa5f rdf:first sg:person.013522035031.07
88 rdf:rest Nb6c7ccb79c904121b62e6719290dac03
89 N4b702a7a6ecd4fe0b0252b20da3445e9 schema:volumeNumber 10
90 rdf:type schema:PublicationVolume
91 N531b1d88b726428e9deaad5a9b336bb5 rdf:first sg:person.01044667306.67
92 rdf:rest rdf:nil
93 N86eb1ef7cb20465a88e61b2f224780b7 schema:name dimensions_id
94 schema:value pub.1100922161
95 rdf:type schema:PropertyValue
96 N97f40a0857b141f6851e669a80efcfd2 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Na04248ce76da4817a8419d19f711e1c8 rdf:first sg:person.01153027570.94
99 rdf:rest N1581ed5edca04da59f6f470e78b74ee3
100 Nb6c7ccb79c904121b62e6719290dac03 rdf:first sg:person.0755635715.71
101 rdf:rest N1fc29e07aa824cada2aec9e9118fa2f8
102 Nc650364cde564bee9d968026839ff295 schema:issueNumber 2
103 rdf:type schema:PublicationIssue
104 Nd03845e91834465383b47e657384f9fc rdf:first sg:person.016267633614.38
105 rdf:rest Na04248ce76da4817a8419d19f711e1c8
106 Ne4f3798c91c94ee5bbd2cf58698f13a5 rdf:first sg:person.01213145215.14
107 rdf:rest N531b1d88b726428e9deaad5a9b336bb5
108 Ne6ce02e98fc34b59b7ef5ad362e64996 schema:name doi
109 schema:value 10.1038/am.2017.240
110 rdf:type schema:PropertyValue
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
115 schema:name Materials Engineering
116 rdf:type schema:DefinedTerm
117 sg:grant.8124732 http://pending.schema.org/fundedItem sg:pub.10.1038/am.2017.240
118 rdf:type schema:MonetaryGrant
119 sg:journal.1053485 schema:issn 1884-4049
120 1884-4057
121 schema:name NPG Asia Materials
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.01044667306.67 schema:affiliation grid-institutes:grid.8547.e
125 schema:familyName Yang
126 schema:givenName Zhongqin
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044667306.67
128 rdf:type schema:Person
129 sg:person.01153027570.94 schema:affiliation grid-institutes:grid.411351.3
130 schema:familyName Zhao
131 schema:givenName Bao
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153027570.94
133 rdf:type schema:Person
134 sg:person.01213145215.14 schema:affiliation grid-institutes:grid.263761.7
135 schema:familyName Jiang
136 schema:givenName Hua
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213145215.14
138 rdf:type schema:Person
139 sg:person.013522035031.07 schema:affiliation grid-institutes:grid.8547.e
140 schema:familyName Zhou
141 schema:givenName Tong
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522035031.07
143 rdf:type schema:Person
144 sg:person.014674672614.48 schema:affiliation grid-institutes:grid.8547.e
145 schema:familyName Li
146 schema:givenName Ningbo
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674672614.48
148 rdf:type schema:Person
149 sg:person.016267633614.38 schema:affiliation grid-institutes:grid.8547.e
150 schema:familyName Xue
151 schema:givenName Yang
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267633614.38
153 rdf:type schema:Person
154 sg:person.0755635715.71 schema:affiliation grid-institutes:grid.440652.1
155 schema:familyName Zhang
156 schema:givenName Jiayong
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755635715.71
158 rdf:type schema:Person
159 sg:person.07774025227.42 schema:affiliation grid-institutes:grid.64938.30
160 schema:familyName Zhu
161 schema:givenName Yan
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42
163 rdf:type schema:Person
164 sg:pub.10.1007/s12274-016-1384-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003157374
165 https://doi.org/10.1007/s12274-016-1384-3
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/srep08426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037725405
168 https://doi.org/10.1038/srep08426
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/srep10629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044729764
171 https://doi.org/10.1038/srep10629
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/srep21723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024796164
174 https://doi.org/10.1038/srep21723
175 rdf:type schema:CreativeWork
176 grid-institutes:grid.263761.7 schema:alternateName College of Physics, Optoelectronics, and Energy, Soochow University, Suzhou, China
177 schema:name College of Physics, Optoelectronics, and Energy, Soochow University, Suzhou, China
178 rdf:type schema:Organization
179 grid-institutes:grid.411351.3 schema:alternateName College of Physical Science and Information Technology, Liaocheng University, Liaocheng, China
180 schema:name College of Physical Science and Information Technology, Liaocheng University, Liaocheng, China
181 rdf:type schema:Organization
182 grid-institutes:grid.440652.1 schema:alternateName Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
183 schema:name Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
184 rdf:type schema:Organization
185 grid-institutes:grid.64938.30 schema:alternateName College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China
186 schema:name College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China
187 rdf:type schema:Organization
188 grid-institutes:grid.8547.e schema:alternateName Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai, China
189 State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China
190 schema:name Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai, China
191 State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai, China
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...