Biomimetic hydrogel-CNT network induced enhancement of fluid-structure interactions for ultrasensitive nanosensors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10-27

AUTHORS

Meghali Bora, Ajay Giri Prakash Kottapalli, Jianmin Miao, Michael S Triantafyllou

ABSTRACT

Flexible, self-powered, miniaturized, ultrasensitive flow sensors are in high demand for human motion detection, myoelectric prosthesis, biomedical robots, and health-monitoring devices. This paper reports a biomimetic nanoelectromechanical system (NEMS) flow sensor featuring a PVDF nanofiber sensing membrane with a hydrogel infused, vertically aligned carbon nanotube (VACNT) bundle that mechanically interacts with the flow. The hydrogel-VACNT structure mimics the cupula structure in biological flow sensors and gives the NEMS flow sensor ultrahigh sensitivity via a material-induced drag force enhancement mechanism. Through hydrodynamic experimental flow characterization, this work investigates the contributions of the mechanical and structural properties of the hydrogel in offering a sensing performance superior to that of conventional sensors. The ultrahigh sensitivity of the developed sensor enabled the detection of minute flows generated during human motion and micro-droplet propagation. The novel fabrication strategies and combination of materials used in the biomimetic NEMS sensor fabrication may guide the development of several wearable, flexible, and self-powered nanosensors in the future. More... »

PAGES

e440

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/am.2017.183

DOI

http://dx.doi.org/10.1038/am.2017.183

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092402792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Center for Environmental Sensing and Modeling (CENSAM) IRG, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bora", 
        "givenName": "Meghali", 
        "id": "sg:person.0646664034.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646664034.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Center for Environmental Sensing and Modeling (CENSAM) IRG, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kottapalli", 
        "givenName": "Ajay Giri Prakash", 
        "id": "sg:person.01222044446.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222044446.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Jianmin", 
        "id": "sg:person.0734400456.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734400456.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Triantafyllou", 
        "givenName": "Michael S", 
        "id": "sg:person.0612666746.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612666746.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00150193.2016.1230440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002465149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep32955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002719265", 
          "https://doi.org/10.1038/srep32955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/12/5/322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006458244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jeb.009290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006546011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/21/8/085006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007593208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dental.2014.08.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010676984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013927800", 
          "https://doi.org/10.1038/ncomms8109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016919442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2015.0322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018387823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011873111454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023069575", 
          "https://doi.org/10.1023/a:1011873111454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028288002", 
          "https://doi.org/10.1038/nature08603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028288002", 
          "https://doi.org/10.1038/nature08603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609274103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029761917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-008-3540-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030266333", 
          "https://doi.org/10.1007/s10856-008-3540-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200701141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031780586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-012-0708-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032644824", 
          "https://doi.org/10.1007/s10439-012-0708-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-3182/9/4/046011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032925313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035911592", 
          "https://doi.org/10.1038/srep19336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-3182/7/4/046009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036097240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b808839j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039581323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1595194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043095954", 
          "https://doi.org/10.1134/1.1595194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200900606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050881045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200900606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050881045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-3182/5/1/016001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051556814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-3182/5/1/016001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051556814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2013.0162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051627657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mee.2014.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051806441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2008.09.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051826134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2007.902436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061290427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082585072", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-27", 
    "datePublishedReg": "2017-10-27", 
    "description": "Flexible, self-powered, miniaturized, ultrasensitive flow sensors are in high demand for human motion detection, myoelectric prosthesis, biomedical robots, and health-monitoring devices. This paper reports a biomimetic nanoelectromechanical system (NEMS) flow sensor featuring a PVDF nanofiber sensing membrane with a hydrogel infused, vertically aligned carbon nanotube (VACNT) bundle that mechanically interacts with the flow. The hydrogel-VACNT structure mimics the cupula structure in biological flow sensors and gives the NEMS flow sensor ultrahigh sensitivity via a material-induced drag force enhancement mechanism. Through hydrodynamic experimental flow characterization, this work investigates the contributions of the mechanical and structural properties of the hydrogel in offering a sensing performance superior to that of conventional sensors. The ultrahigh sensitivity of the developed sensor enabled the detection of minute flows generated during human motion and micro-droplet propagation. The novel fabrication strategies and combination of materials used in the biomimetic NEMS sensor fabrication may guide the development of several wearable, flexible, and self-powered nanosensors in the future.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/am.2017.183", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053485", 
        "issn": [
          "1884-4049", 
          "1884-4057"
        ], 
        "name": "NPG Asia Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Biomimetic hydrogel-CNT network induced enhancement of fluid-structure interactions for ultrasensitive nanosensors", 
    "pagination": "e440", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e7422021520edac43a31d91cd2dd32791424eaf229a9969f838fbbeff56a996"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/am.2017.183"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092402792"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/am.2017.183", 
      "https://app.dimensions.ai/details/publication/pub.1092402792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/am2017183"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/am.2017.183'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/am.2017.183'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/am.2017.183'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/am.2017.183'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      53 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/am.2017.183 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N80e641a0d7844da0ab0d191e6f5ae2c6
4 schema:citation sg:pub.10.1007/s10439-012-0708-z
5 sg:pub.10.1007/s10856-008-3540-0
6 sg:pub.10.1023/a:1011873111454
7 sg:pub.10.1038/nature08603
8 sg:pub.10.1038/ncomms8109
9 sg:pub.10.1038/srep19336
10 sg:pub.10.1038/srep32955
11 sg:pub.10.1134/1.1595194
12 https://app.dimensions.ai/details/publication/pub.1082585072
13 https://doi.org/10.1002/adfm.200900606
14 https://doi.org/10.1002/adma.200701141
15 https://doi.org/10.1002/bit.10605
16 https://doi.org/10.1016/j.dental.2014.08.369
17 https://doi.org/10.1016/j.mee.2014.10.011
18 https://doi.org/10.1016/j.polymer.2008.09.039
19 https://doi.org/10.1039/b808839j
20 https://doi.org/10.1073/pnas.0609274103
21 https://doi.org/10.1080/00150193.2016.1230440
22 https://doi.org/10.1088/0960-1317/12/5/322
23 https://doi.org/10.1088/0960-1317/21/8/085006
24 https://doi.org/10.1088/1748-3182/5/1/016001
25 https://doi.org/10.1088/1748-3182/7/4/046009
26 https://doi.org/10.1088/1748-3182/9/4/046011
27 https://doi.org/10.1098/rsif.2013.0162
28 https://doi.org/10.1098/rsif.2015.0322
29 https://doi.org/10.1109/jmems.2007.902436
30 https://doi.org/10.1242/jeb.009290
31 schema:datePublished 2017-10-27
32 schema:datePublishedReg 2017-10-27
33 schema:description Flexible, self-powered, miniaturized, ultrasensitive flow sensors are in high demand for human motion detection, myoelectric prosthesis, biomedical robots, and health-monitoring devices. This paper reports a biomimetic nanoelectromechanical system (NEMS) flow sensor featuring a PVDF nanofiber sensing membrane with a hydrogel infused, vertically aligned carbon nanotube (VACNT) bundle that mechanically interacts with the flow. The hydrogel-VACNT structure mimics the cupula structure in biological flow sensors and gives the NEMS flow sensor ultrahigh sensitivity via a material-induced drag force enhancement mechanism. Through hydrodynamic experimental flow characterization, this work investigates the contributions of the mechanical and structural properties of the hydrogel in offering a sensing performance superior to that of conventional sensors. The ultrahigh sensitivity of the developed sensor enabled the detection of minute flows generated during human motion and micro-droplet propagation. The novel fabrication strategies and combination of materials used in the biomimetic NEMS sensor fabrication may guide the development of several wearable, flexible, and self-powered nanosensors in the future.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N7ccaca546e1f4e388ebd9e20b5962ba7
38 Nb51cd2771e1f4c53956149a25561347d
39 sg:journal.1053485
40 schema:name Biomimetic hydrogel-CNT network induced enhancement of fluid-structure interactions for ultrasensitive nanosensors
41 schema:pagination e440
42 schema:productId N04edc8c8279742c699eb1390e637f807
43 N313d36e7a4774cc8800988dc8d60afbe
44 N79f695b5cbd245158b07d3bc3c7b0be6
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092402792
46 https://doi.org/10.1038/am.2017.183
47 schema:sdDatePublished 2019-04-10T20:34
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nf17e8fc727814865be01b5c820d7eff2
50 schema:url https://www.nature.com/articles/am2017183
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N04edc8c8279742c699eb1390e637f807 schema:name dimensions_id
55 schema:value pub.1092402792
56 rdf:type schema:PropertyValue
57 N1726dcc7ee7843a2b8fd66bd449e36a8 rdf:first sg:person.0734400456.51
58 rdf:rest Nd7a51401b4c342e49cbc86f2d1755259
59 N313d36e7a4774cc8800988dc8d60afbe schema:name readcube_id
60 schema:value 1e7422021520edac43a31d91cd2dd32791424eaf229a9969f838fbbeff56a996
61 rdf:type schema:PropertyValue
62 N79f695b5cbd245158b07d3bc3c7b0be6 schema:name doi
63 schema:value 10.1038/am.2017.183
64 rdf:type schema:PropertyValue
65 N7ccaca546e1f4e388ebd9e20b5962ba7 schema:issueNumber 10
66 rdf:type schema:PublicationIssue
67 N80e641a0d7844da0ab0d191e6f5ae2c6 rdf:first sg:person.0646664034.17
68 rdf:rest N9add8316d8034770985821f020612076
69 N9add8316d8034770985821f020612076 rdf:first sg:person.01222044446.33
70 rdf:rest N1726dcc7ee7843a2b8fd66bd449e36a8
71 Nb51cd2771e1f4c53956149a25561347d schema:volumeNumber 9
72 rdf:type schema:PublicationVolume
73 Nd7a51401b4c342e49cbc86f2d1755259 rdf:first sg:person.0612666746.57
74 rdf:rest rdf:nil
75 Nf17e8fc727814865be01b5c820d7eff2 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
81 schema:name Biomedical Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1053485 schema:issn 1884-4049
84 1884-4057
85 schema:name NPG Asia Materials
86 rdf:type schema:Periodical
87 sg:person.01222044446.33 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
88 schema:familyName Kottapalli
89 schema:givenName Ajay Giri Prakash
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222044446.33
91 rdf:type schema:Person
92 sg:person.0612666746.57 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
93 schema:familyName Triantafyllou
94 schema:givenName Michael S
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612666746.57
96 rdf:type schema:Person
97 sg:person.0646664034.17 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
98 schema:familyName Bora
99 schema:givenName Meghali
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646664034.17
101 rdf:type schema:Person
102 sg:person.0734400456.51 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
103 schema:familyName Miao
104 schema:givenName Jianmin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734400456.51
106 rdf:type schema:Person
107 sg:pub.10.1007/s10439-012-0708-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032644824
108 https://doi.org/10.1007/s10439-012-0708-z
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10856-008-3540-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030266333
111 https://doi.org/10.1007/s10856-008-3540-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/a:1011873111454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023069575
114 https://doi.org/10.1023/a:1011873111454
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature08603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028288002
117 https://doi.org/10.1038/nature08603
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/ncomms8109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013927800
120 https://doi.org/10.1038/ncomms8109
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/srep19336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035911592
123 https://doi.org/10.1038/srep19336
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/srep32955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002719265
126 https://doi.org/10.1038/srep32955
127 rdf:type schema:CreativeWork
128 sg:pub.10.1134/1.1595194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043095954
129 https://doi.org/10.1134/1.1595194
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1082585072 schema:CreativeWork
132 https://doi.org/10.1002/adfm.200900606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050881045
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/adma.200701141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031780586
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/bit.10605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016919442
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.dental.2014.08.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010676984
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.mee.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806441
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.polymer.2008.09.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051826134
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1039/b808839j schema:sameAs https://app.dimensions.ai/details/publication/pub.1039581323
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.0609274103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029761917
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/00150193.2016.1230440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002465149
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/0960-1317/12/5/322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006458244
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/0960-1317/21/8/085006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007593208
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/1748-3182/5/1/016001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051556814
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1088/1748-3182/7/4/046009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036097240
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/1748-3182/9/4/046011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032925313
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1098/rsif.2013.0162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051627657
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1098/rsif.2015.0322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018387823
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/jmems.2007.902436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061290427
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1242/jeb.009290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006546011
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
169 schema:name Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.429485.6 schema:alternateName Singapore-MIT Alliance for Research and Technology
172 schema:name Center for Environmental Sensing and Modeling (CENSAM) IRG, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
175 schema:name School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...