Monolayer 1T-NbSe2 as a Mott insulator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11

AUTHORS

Yuki Nakata, Katsuaki Sugawara, Ryota Shimizu, Yoshinori Okada, Patrick Han, Taro Hitosugi, Keiji Ueno, Takafumi Sato, Takashi Takahashi

ABSTRACT

The emergence of exotic quantum phenomena is often triggered by a subtle change in the crystal phase. Transition metal dichalcogenides (TMDs) exhibit a wide variety of novel properties, depending on their crystal phases, which can be trigonal prismatic (2H) or octahedral (1T). Bulk NbSe2 crystallizes into the 2H phase, and the charge density wave and the superconductivity emerge simultaneously and interact with each other, thereby creating various anomalous properties. However, these properties and their interplay in another polymorph, 1T-NbSe2, have remained unclear because of the difficulty of synthesizing it. Here we report the first experimental realization of a monolayer 1T-NbSe2 crystal grown epitaxially on bilayer graphene. In contrast with 2H-NbSe2, monolayer 1T-NbSe2 was found to be a Mott insulator, with an energy gap of 0.4 eV. We also found that the insulating 1T and metallic 2H phases can be selectively fabricated by simply controlling the substrate temperature during epitaxy. The present results open a path to crystal-phase engineering based on TMDs. More... »

PAGES

e321

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/am.2016.157

DOI

http://dx.doi.org/10.1038/am.2016.157

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049267994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Department of Physics, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakata", 
        "givenName": "Yuki", 
        "id": "sg:person.01017113575.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017113575.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugawara", 
        "givenName": "Katsuaki", 
        "id": "sg:person.01353636572.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353636572.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan", 
            "Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimizu", 
        "givenName": "Ryota", 
        "id": "sg:person.0676345672.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676345672.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okada", 
        "givenName": "Yoshinori", 
        "id": "sg:person.0653226316.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653226316.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Patrick", 
        "id": "sg:person.01111274420.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111274420.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan", 
            "Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hitosugi", 
        "givenName": "Taro", 
        "id": "sg:person.01135114004.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135114004.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueno", 
        "givenName": "Keiji", 
        "id": "sg:person.016362132540.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362132540.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Department of Physics, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Takafumi", 
        "id": "sg:person.012724005105.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724005105.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Department of Physics, Tohoku University, Sendai, Japan", 
            "WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Takashi", 
        "id": "sg:person.012324742574.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324742574.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/29/3/037402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005911355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006940404", 
          "https://doi.org/10.1038/nphys3527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.166401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012407345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.166401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012407345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4833250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013236847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014123450", 
          "https://doi.org/10.1038/nnano.2015.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b00648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015129891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9317(84)90057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9317(84)90057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5088(71)90053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019693067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5088(71)90053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019693067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018737500101391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020691468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p83-013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028901119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034933436", 
          "https://doi.org/10.1038/nnano.2014.64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b06727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035883420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201401802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038315734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038763950", 
          "https://doi.org/10.1038/nmat4080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4862336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039150531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039352292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl504811s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041132030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041998588", 
          "https://doi.org/10.1038/nphys3538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5cc00803d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043018480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044349122", 
          "https://doi.org/10.1038/nmat2318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab3175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052125115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/26/265005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052180961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/26/265005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052180961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4928658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058095116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.2220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.2220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.4513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.4513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.241108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.241108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.172503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.172503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.224532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.224532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.176403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.176403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.036405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.036405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.66.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063116710"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "The emergence of exotic quantum phenomena is often triggered by a subtle change in the crystal phase. Transition metal dichalcogenides (TMDs) exhibit a wide variety of novel properties, depending on their crystal phases, which can be trigonal prismatic (2H) or octahedral (1T). Bulk NbSe2 crystallizes into the 2H phase, and the charge density wave and the superconductivity emerge simultaneously and interact with each other, thereby creating various anomalous properties. However, these properties and their interplay in another polymorph, 1T-NbSe2, have remained unclear because of the difficulty of synthesizing it. Here we report the first experimental realization of a monolayer 1T-NbSe2 crystal grown epitaxially on bilayer graphene. In contrast with 2H-NbSe2, monolayer 1T-NbSe2 was found to be a Mott insulator, with an energy gap of 0.4 eV. We also found that the insulating 1T and metallic 2H phases can be selectively fabricated by simply controlling the substrate temperature during epitaxy. The present results open a path to crystal-phase engineering based on TMDs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/am.2016.157", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6112314", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5865418", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5855401", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6127150", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053485", 
        "issn": [
          "1884-4049", 
          "1884-4057"
        ], 
        "name": "NPG Asia Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Monolayer 1T-NbSe2 as a Mott insulator", 
    "pagination": "e321", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049267994"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/am.2016.157"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eab4220b67a004db5d3188d0a54cf697e478ba644e99b15d11d2b996a11db65d"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/am.2016.157", 
      "https://app.dimensions.ai/details/publication/pub.1049267994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106810_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/am2016157"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/am.2016.157'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/am.2016.157'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/am.2016.157'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/am.2016.157'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/am.2016.157 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd8f4436fce5c41fb83856bafd2d0a396
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nmat2318
6 sg:pub.10.1038/nmat4080
7 sg:pub.10.1038/nnano.2014.64
8 sg:pub.10.1038/nnano.2015.143
9 sg:pub.10.1038/nphys3527
10 sg:pub.10.1038/nphys3538
11 https://doi.org/10.1002/adma.201401802
12 https://doi.org/10.1016/0022-5088(71)90053-1
13 https://doi.org/10.1016/0167-9317(84)90057-1
14 https://doi.org/10.1021/acs.nanolett.5b00648
15 https://doi.org/10.1021/acsnano.5b06727
16 https://doi.org/10.1021/nl504811s
17 https://doi.org/10.1039/c5cc00803d
18 https://doi.org/10.1063/1.4833250
19 https://doi.org/10.1063/1.4862336
20 https://doi.org/10.1063/1.4928658
21 https://doi.org/10.1080/00018737500101391
22 https://doi.org/10.1088/0256-307x/29/3/037402
23 https://doi.org/10.1088/0953-8984/21/26/265005
24 https://doi.org/10.1088/0953-8984/21/39/395502
25 https://doi.org/10.1103/physrev.176.250
26 https://doi.org/10.1103/physrevb.12.2220
27 https://doi.org/10.1103/physrevb.54.11706
28 https://doi.org/10.1103/physrevb.60.4513
29 https://doi.org/10.1103/physrevb.80.241108
30 https://doi.org/10.1103/physrevb.81.172503
31 https://doi.org/10.1103/physrevb.85.224532
32 https://doi.org/10.1103/physrevlett.109.176403
33 https://doi.org/10.1103/physrevlett.90.166401
34 https://doi.org/10.1103/physrevlett.94.036405
35 https://doi.org/10.1126/science.1065068
36 https://doi.org/10.1126/science.aab3175
37 https://doi.org/10.1139/p83-013
38 https://doi.org/10.1143/jpsj.66.298
39 schema:datePublished 2016-11
40 schema:datePublishedReg 2016-11-01
41 schema:description The emergence of exotic quantum phenomena is often triggered by a subtle change in the crystal phase. Transition metal dichalcogenides (TMDs) exhibit a wide variety of novel properties, depending on their crystal phases, which can be trigonal prismatic (2H) or octahedral (1T). Bulk NbSe2 crystallizes into the 2H phase, and the charge density wave and the superconductivity emerge simultaneously and interact with each other, thereby creating various anomalous properties. However, these properties and their interplay in another polymorph, 1T-NbSe2, have remained unclear because of the difficulty of synthesizing it. Here we report the first experimental realization of a monolayer 1T-NbSe2 crystal grown epitaxially on bilayer graphene. In contrast with 2H-NbSe2, monolayer 1T-NbSe2 was found to be a Mott insulator, with an energy gap of 0.4 eV. We also found that the insulating 1T and metallic 2H phases can be selectively fabricated by simply controlling the substrate temperature during epitaxy. The present results open a path to crystal-phase engineering based on TMDs.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N0b4f02613c73446c8bea2896a846f987
46 Nfe55ced68cdd4620ba993d0efd22429d
47 sg:journal.1053485
48 schema:name Monolayer 1T-NbSe2 as a Mott insulator
49 schema:pagination e321
50 schema:productId N00673e028b004a93b188348d738a0334
51 N3e3d71c153344337bc5a125114a61131
52 N96db651ce9fc410eacfaa9ccd1831772
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049267994
54 https://doi.org/10.1038/am.2016.157
55 schema:sdDatePublished 2019-04-16T06:21
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N9eea07bc39df4f7ab19f87656d54a38a
58 schema:url https://www.nature.com/articles/am2016157
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N00673e028b004a93b188348d738a0334 schema:name dimensions_id
63 schema:value pub.1049267994
64 rdf:type schema:PropertyValue
65 N0b4f02613c73446c8bea2896a846f987 schema:issueNumber 11
66 rdf:type schema:PublicationIssue
67 N1af0d4b1411d42deac8227b450c535ef rdf:first sg:person.01135114004.92
68 rdf:rest N5ceac95afb294e8684fd66c7ab417d5a
69 N30df51e7b5b141b886e2664dbb6138a6 rdf:first sg:person.0653226316.52
70 rdf:rest N83cf1847c4274c06909348cba9afdc64
71 N3111d5d3794643c3a98420a2879bd785 rdf:first sg:person.01353636572.48
72 rdf:rest Nc4af3c7c198643d1a80d9d1c4b85ebdb
73 N3e3d71c153344337bc5a125114a61131 schema:name doi
74 schema:value 10.1038/am.2016.157
75 rdf:type schema:PropertyValue
76 N5ceac95afb294e8684fd66c7ab417d5a rdf:first sg:person.016362132540.91
77 rdf:rest N66c827fa05a24a67b90dafbbdc5c47a5
78 N66c827fa05a24a67b90dafbbdc5c47a5 rdf:first sg:person.012724005105.19
79 rdf:rest Nc965194d01de40fa806e10847021d910
80 N83cf1847c4274c06909348cba9afdc64 rdf:first sg:person.01111274420.23
81 rdf:rest N1af0d4b1411d42deac8227b450c535ef
82 N96db651ce9fc410eacfaa9ccd1831772 schema:name readcube_id
83 schema:value eab4220b67a004db5d3188d0a54cf697e478ba644e99b15d11d2b996a11db65d
84 rdf:type schema:PropertyValue
85 N9eea07bc39df4f7ab19f87656d54a38a schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nc4af3c7c198643d1a80d9d1c4b85ebdb rdf:first sg:person.0676345672.79
88 rdf:rest N30df51e7b5b141b886e2664dbb6138a6
89 Nc965194d01de40fa806e10847021d910 rdf:first sg:person.012324742574.77
90 rdf:rest rdf:nil
91 Nd8f4436fce5c41fb83856bafd2d0a396 rdf:first sg:person.01017113575.64
92 rdf:rest N3111d5d3794643c3a98420a2879bd785
93 Nfe55ced68cdd4620ba993d0efd22429d schema:volumeNumber 8
94 rdf:type schema:PublicationVolume
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:grant.5855401 http://pending.schema.org/fundedItem sg:pub.10.1038/am.2016.157
102 rdf:type schema:MonetaryGrant
103 sg:grant.5865418 http://pending.schema.org/fundedItem sg:pub.10.1038/am.2016.157
104 rdf:type schema:MonetaryGrant
105 sg:grant.6112314 http://pending.schema.org/fundedItem sg:pub.10.1038/am.2016.157
106 rdf:type schema:MonetaryGrant
107 sg:grant.6127150 http://pending.schema.org/fundedItem sg:pub.10.1038/am.2016.157
108 rdf:type schema:MonetaryGrant
109 sg:journal.1053485 schema:issn 1884-4049
110 1884-4057
111 schema:name NPG Asia Materials
112 rdf:type schema:Periodical
113 sg:person.01017113575.64 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
114 schema:familyName Nakata
115 schema:givenName Yuki
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017113575.64
117 rdf:type schema:Person
118 sg:person.01111274420.23 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
119 schema:familyName Han
120 schema:givenName Patrick
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111274420.23
122 rdf:type schema:Person
123 sg:person.01135114004.92 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
124 schema:familyName Hitosugi
125 schema:givenName Taro
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135114004.92
127 rdf:type schema:Person
128 sg:person.012324742574.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
129 schema:familyName Takahashi
130 schema:givenName Takashi
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324742574.77
132 rdf:type schema:Person
133 sg:person.012724005105.19 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
134 schema:familyName Sato
135 schema:givenName Takafumi
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724005105.19
137 rdf:type schema:Person
138 sg:person.01353636572.48 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
139 schema:familyName Sugawara
140 schema:givenName Katsuaki
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353636572.48
142 rdf:type schema:Person
143 sg:person.016362132540.91 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
144 schema:familyName Ueno
145 schema:givenName Keiji
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362132540.91
147 rdf:type schema:Person
148 sg:person.0653226316.52 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
149 schema:familyName Okada
150 schema:givenName Yoshinori
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653226316.52
152 rdf:type schema:Person
153 sg:person.0676345672.79 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
154 schema:familyName Shimizu
155 schema:givenName Ryota
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676345672.79
157 rdf:type schema:Person
158 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
159 https://doi.org/10.1038/nature04233
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmat2318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044349122
162 https://doi.org/10.1038/nmat2318
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmat4080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038763950
165 https://doi.org/10.1038/nmat4080
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nnano.2014.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034933436
168 https://doi.org/10.1038/nnano.2014.64
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nnano.2015.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014123450
171 https://doi.org/10.1038/nnano.2015.143
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nphys3527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006940404
174 https://doi.org/10.1038/nphys3527
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nphys3538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041998588
177 https://doi.org/10.1038/nphys3538
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/adma.201401802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038315734
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0022-5088(71)90053-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019693067
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0167-9317(84)90057-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017379974
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.nanolett.5b00648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015129891
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/acsnano.5b06727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035883420
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/nl504811s schema:sameAs https://app.dimensions.ai/details/publication/pub.1041132030
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1039/c5cc00803d schema:sameAs https://app.dimensions.ai/details/publication/pub.1043018480
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.4833250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013236847
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.4862336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039150531
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.4928658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058095116
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1080/00018737500101391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020691468
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1088/0256-307x/29/3/037402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005911355
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1088/0953-8984/21/26/265005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052180961
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1088/0953-8984/21/39/395502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037182159
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrev.176.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440145
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.12.2220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060520054
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.54.11706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581324
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.60.4513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060594121
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.80.241108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631148
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.81.172503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632481
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.85.224532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639138
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.109.176403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760491
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.90.166401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012407345
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.94.036405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829757
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.1065068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039352292
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.aab3175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052125115
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1139/p83-013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028901119
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1143/jpsj.66.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063116710
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.263023.6 schema:alternateName Saitama University
236 schema:name Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
239 schema:name Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo, Japan
240 WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
243 schema:name Department of Physics, Tohoku University, Sendai, Japan
244 WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...