Libraries of hybrid proteins from distantly related sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

Volker Sieber, Carlos A. Martinez, Frances H. Arnold

ABSTRACT

We introduce a method for sequence homology-independent protein recombination (SHIPREC) that can create libraries of single-crossover hybrids of unrelated or distantly related proteins. The method maintains the proper sequence alignment between the parents and introduces crossovers mainly at structurally related sites distributed over the aligned sequences. We used SHIPREC to create a library of interspecies hybrids of a membrane-associated human cytochrome P450 (1A2) and the heme domain of a soluble bacterial P450 (BM3). By fusing the hybrid gene library to the gene for chloramphenicol acetyl transferase (CAT), we were able to select for soluble and properly folded protein variants. Screening for 1A2 activity (deethylation of 7-ethoxyresorufin) identified two functional P450 hybrids that were more soluble in the bacterial cytoplasm than the wild-type 1A2 enzyme. More... »

PAGES

nbt0501_456

References to SciGraph publications

Journal

TITLE

Nature Biotechnology

ISSUE

5

VOLUME

19

Related Patents

  • Microorganisms For The Production Of 1,4-Butanediol
  • Formulations Of Human Growth Hormone Comprising A Non-Naturally Encoded Amino Acid At Position 35
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Modified Interferon Beta Polypeptides And Their Uses
  • Crystal Structures Of Heterodimeric Fc Domains
  • Nucleic Acids Encoding Modified Fgf-21 Polypeptides Comprising Non-Naturally Occurring Amino Acids
  • Microorganisms For Producing Butadiene And Methods Related Thereto
  • Microorganisms And Methods For Enhancing The Availability Of Reducing Equivalents In The Presence Of Methanol, And For Producing Succinate Related Thereto
  • Organisms For The Production Of 1,3-Butanediol
  • Microorganisms And Methods For The Co-Production Of Isopropanol And 1,4-Butanediol
  • Methods And Compositions Comprising Non-Natural Amino Acids
  • Modified Fgf-21 Polypeptides Comprising An Internal Deletion And Uses Thereof
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Methods And Organisms For Converting Synthesis Gas Or Other Gaseous Carbon Sources And Methanol To 1,3-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Methods And Organisms For Converting Synthesis Gas Or Other Gaseous Carbon Sources And Methanol To 1,3-Butanediol
  • Assembly Of High Fidelity Polynucleotides
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Methods Of Constructing And Screening Libraries Of Peptide Structures
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For Production Of 4-Hydroxybutyrate, 1,4-Butanediol And Related Compounds
  • Non-Natural Amino Acid Replication-Dependent Microorganisms And Vaccines
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Continuous Directed Evolution Of Proteins And Nucleic Acids
  • Microorganisms And Methods For Enhancing The Availability Of Reducing Equivalents In The Presence Of Methanol, And For Producing 1,2-Propanediol, N-Propanol, 1,3-Propanediol, Or Glycerol Related Thereto
  • Methods Of Constructing And Screening Libraries Of Peptide Structures
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Modified Fgf-21 Polypeptides And Their Uses
  • Modified Human Plasma Polypeptide Or Fc Scaffolds And Their Uses
  • Modified Human Growth Horomone Polypeptides And Their Uses
  • Modified Human Plasma Polypeptide Or Fc Scaffolds And Their Uses
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Relaxin Polypeptides Comprising Non-Naturally Encoded Amino Acids
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Modified Human Interferon Polypeptides And Their Uses
  • Site Specific Incorporation Of Keto Amino Acids Into Proteins
  • Modified Human Growth Hormone Formulations With An Increased Serum Half-Life
  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms And Methods For The Biosynthesis Of Propylene
  • Crystal Structures Of Heterodimeric Fc Domains
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms And Methods For Enhancing The Availability Of Reducing Equivalents In The Presence Of Methanol, For Producing Methacrylic Acid
  • Method Of Treating Heart Failure With Modified Relaxin Polypeptides
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Modified Human Growth Hormone
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Modified Human Four Helical Bundle Polypeptides And Their Uses
  • Human Growth Hormone Modified At Position 35
  • Process Of Separating Components Of A Fermentation Broth
  • Stable Fungal Cel6 Enzyme Variants
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Microorganisms And Methods For The Production Of Caprolactone
  • Nucleic Acids Encoding Modified Relaxin Polypeptides
  • Apparatus For Continuous Directed Evolution Of Proteins And Nucleic Acids
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods For The Synthesis Of Olefins And Derivatives
  • Modified Human Four Helical Bundle Polypeptides And Their Uses
  • Modified Fgf-21 Polypeptides Comprising An Internal Deletion And Uses Thereof
  • Microorganisms And Methods For Carbon-Efficient Biosynthesis Of Mek And 2-Butanol
  • Assembly Of High Fidelity Polynucleotides
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Compositions And Methods Comprising Serine Protease Variants
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Compositions And Uses Thereof For The Treatment Of Acute Respiratory Distress Syndrome (Ards) And Clinical Disorders Associated With Therewith
  • Microarray Synthesis And Assembly Of Gene-Length Polynucleotides
  • Microfluidic Devices And Methods For Gene Synthesis
  • Microorganisms And Methods For Producing Alkenes
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Directed Evolution Of Proteins
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms For Producing Propylene And Methods Related Thereto
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Microorganisms For Producing Butadiene And Methods Related Thereto
  • Microorganisms And Methods For The Production Of Caprolactone
  • Organisms For The Production Of 1,3-Butanediol
  • Organisms For The Production Of 1,3-Butanediol
  • Antigen-Binding Polypeptides And Their Uses
  • Organisms For The Production Of 1,3-Butanediol
  • Compositions And Uses Thereof For The Treatment Of Wounds
  • Methods Of Making Fgf-21 Mutants Comprising Non-Naturally Encoded Phenylalanine Derivatives
  • Modified Fgf-21 Polypeptides Comprising Non-Naturally Occurring Amino Acids
  • Process Of Producing Non-Naturally Encoded Amino Acid Containing High Conjugated To A Water Soluble Polymer
  • Microbial Organisms Comprising Exogenous Nucleic Acids Encoding Reductive Tca Pathway Enzymes
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Methods For Expression And Purification Of Recombinant Human Growth Hormone Mutants
  • Site Specific Incorporation Of Keto Amino Acids Into Proteins
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Modified Animal Erythropoietin Polypeptides And Their Uses
  • Microorganisms And Methods For The Production Of Caprolactone
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Microorganisms And Methods For Enhancing The Availability Of Reducing Equivalents In The Presence Of Methanol, And For Producing 3-Hydroxyisobutyrate Or Methacrylic Acid Related Thereto
  • Non-Natural Amino Acid Replication-Dependent Microorganisms And Vaccines
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • R-Hydroxynitrile Lyase (R-Hnl) Random Variants And Their Use For Preparing Optically Pure, Sterically Hindered Cyanohydrins
  • Suppressor Trna Transcription In Vertebrate Cells
  • Microorganisms And Methods For Enhancing The Availability Of Reducing Equivalents In The Presence Of Methanol, And For Producing 1,4-Butanediol Related Thereto
  • Pegylated Human Interferon Polypeptides
  • Methods Of Constructing And Screening Diverse Expression Libraries
  • Modified Insulin Polypeptides And Their Uses
  • Therapeutic Uses Of Modified Relaxin Polypeptides
  • Modified Human Interferon Polypeptides And Their Uses
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Iterative Nucleic Acid Assembly Using Activation Of Vector-Encoded Traits
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Modified Human Four Helical Bundle Polypeptides And Their Uses
  • Double Transposition Methods For Manipulating Nucleic Acids
  • Methods For Sorting Nucleic Acids And Multiplexed Preparative In Vitro Cloning
  • Modified Leptin Polypeptides And Their Uses
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods For Increasing Product Yields
  • Microfluidic Devices And Methods For Gene Synthesis
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Formulations Of Human Growth Hormone Comprising A Non-Naturally Encoded Amino Acid
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Modified Human Plasma Polypeptide Or Fc Scaffolds And Their Uses
  • Compositions Of Aminoacyl-Trna Synthetase And Uses Thereof
  • Primary Alcohol Producing Organisms
  • Overexpression Of Aminoacyl-Trna Synthetases For Efficient Production Of Engineered Proteins Containing Amino Acid Analogues
  • Nucleic Acid Shuffling
  • Primary Alcohol Producing Organisms
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Methods For Expression And Purification Of Pegylated Recombinant Human Growth Hormone Containing A Non-Naturally Encoded Keto Amino Acid
  • Modified Human Interferon Polypeptides With At Least One Non-Naturally Encoded Amino Acid And Their Uses
  • Organisms For The Production Of Isopropanol, N-Butanol, And Isobutanol
  • Continuous Directed Evolution
  • Microorganisms For The Production Of 1,4-Butanediol
  • Methods For Expression And Purification Of Recombinant Human Growth Hormone
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/88129

    DOI

    http://dx.doi.org/10.1038/88129

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037342386

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11329016


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artificial Gene Fusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytochrome P-450 CYP1A2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytochrome P-450 Enzyme System", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mixed Function Oxygenases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "NADPH-Ferrihemoprotein Reductase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Structure, Tertiary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombinant Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Homology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solubility", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena CA 91105."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sieber", 
            "givenName": "Volker", 
            "id": "sg:person.0751754076.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751754076.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena CA 91105."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martinez", 
            "givenName": "Carlos A.", 
            "id": "sg:person.01364353405.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364353405.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena CA 91105."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arnold", 
            "givenName": "Frances H.", 
            "id": "sg:person.01033414373.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033414373.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1385/0-89603-519-0:25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000219797", 
              "https://doi.org/10.1385/0-89603-519-0:25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-3233(01)55002-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004928410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/26.2.681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006249974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.20.11241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008060613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/7939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013126970", 
              "https://doi.org/10.1038/7939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/7939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013126970", 
              "https://doi.org/10.1038/7939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.21.11591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013894302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0398-258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017776064", 
              "https://doi.org/10.1038/nbt0398-258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bb.20.060191.002051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018241124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.18.e18-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018243538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-291x(83)80220-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021203125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1432-1033.1994.1005b.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022879348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/70754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024424823", 
              "https://doi.org/10.1038/70754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/70754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024424823", 
              "https://doi.org/10.1038/70754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026933436", 
              "https://doi.org/10.1038/10850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026933436", 
              "https://doi.org/10.1038/10850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.22.10747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030966093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0897-784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032255624", 
              "https://doi.org/10.1038/nbt0897-784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.8.9.1908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035110099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/abbi.1996.0086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036794666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/0-89603-519-0:181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039088764", 
              "https://doi.org/10.1385/0-89603-519-0:181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.6.2591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044223297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/abbi.1995.1016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048121376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00211a003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055165405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi972775z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055215088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi972775z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055215088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/dna.1985.4.395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059250775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.18.e18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059931857"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-05", 
        "datePublishedReg": "2001-05-01", 
        "description": "We introduce a method for sequence homology-independent protein recombination (SHIPREC) that can create libraries of single-crossover hybrids of unrelated or distantly related proteins. The method maintains the proper sequence alignment between the parents and introduces crossovers mainly at structurally related sites distributed over the aligned sequences. We used SHIPREC to create a library of interspecies hybrids of a membrane-associated human cytochrome P450 (1A2) and the heme domain of a soluble bacterial P450 (BM3). By fusing the hybrid gene library to the gene for chloramphenicol acetyl transferase (CAT), we were able to select for soluble and properly folded protein variants. Screening for 1A2 activity (deethylation of 7-ethoxyresorufin) identified two functional P450 hybrids that were more soluble in the bacterial cytoplasm than the wild-type 1A2 enzyme.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/88129", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Libraries of hybrid proteins from distantly related sequences", 
        "pagination": "nbt0501_456", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b1e288acc1959338e8372400b119d1a9d260336ca9f02f54f9606aed9debec2f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11329016"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/88129"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037342386"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/88129", 
          "https://app.dimensions.ai/details/publication/pub.1037342386"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87079_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nbt0501_456"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/88129'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/88129'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/88129'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/88129'


     

    This table displays all metadata directly associated to this object as RDF triples.

    229 TRIPLES      21 PREDICATES      69 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/88129 schema:about N0efa3476087e409ba4900d5c40288cfb
    2 N1606745645bf4ee5bbd946f2471b458c
    3 N18395410e1af43038dd6d2e2f2d290f6
    4 N277641f35539470dac1a6785cfb5dc32
    5 N38d757e369b2454191d89436c8e44445
    6 N3af92dbaf058469a9bcda0e250d43002
    7 N3cdd299f68f34824b1e1bbd3fb2da3a6
    8 N42b113edcb074f9aa9a2be024eb018bc
    9 N5fe87cd173f74e39a2812b40f6a2c7fa
    10 N60d936530dc64b849b2cb08b9517d8e4
    11 N732fdfebce60418ab276a0dc75607696
    12 N88779d467373400aab4d818963bf33f2
    13 N8aad087e8f9e49feb0730cd283d50d33
    14 Nac913444815f4c8ba8ae3218aac5c788
    15 Nb121fdc2facf423bada0403082d32dae
    16 Ncdfa9066e592468c8509a284f846b9a0
    17 anzsrc-for:06
    18 anzsrc-for:0601
    19 schema:author N1c33fbde0d59431ab0f3b13a066cfb79
    20 schema:citation sg:pub.10.1038/10850
    21 sg:pub.10.1038/70754
    22 sg:pub.10.1038/7939
    23 sg:pub.10.1038/nbt0398-258
    24 sg:pub.10.1038/nbt0897-784
    25 sg:pub.10.1385/0-89603-519-0:181
    26 sg:pub.10.1385/0-89603-519-0:25
    27 https://doi.org/10.1006/abbi.1995.1016
    28 https://doi.org/10.1006/abbi.1996.0086
    29 https://doi.org/10.1016/s0006-291x(83)80220-4
    30 https://doi.org/10.1016/s0065-3233(01)55002-0
    31 https://doi.org/10.1021/bi00211a003
    32 https://doi.org/10.1021/bi972775z
    33 https://doi.org/10.1073/pnas.91.22.10747
    34 https://doi.org/10.1073/pnas.93.21.11591
    35 https://doi.org/10.1073/pnas.96.20.11241
    36 https://doi.org/10.1073/pnas.96.6.2591
    37 https://doi.org/10.1089/dna.1985.4.395
    38 https://doi.org/10.1093/nar/26.2.681
    39 https://doi.org/10.1093/nar/27.18.e18
    40 https://doi.org/10.1093/nar/27.18.e18-i
    41 https://doi.org/10.1110/ps.8.9.1908
    42 https://doi.org/10.1111/j.1432-1033.1994.1005b.x
    43 https://doi.org/10.1146/annurev.bb.20.060191.002051
    44 schema:datePublished 2001-05
    45 schema:datePublishedReg 2001-05-01
    46 schema:description We introduce a method for sequence homology-independent protein recombination (SHIPREC) that can create libraries of single-crossover hybrids of unrelated or distantly related proteins. The method maintains the proper sequence alignment between the parents and introduces crossovers mainly at structurally related sites distributed over the aligned sequences. We used SHIPREC to create a library of interspecies hybrids of a membrane-associated human cytochrome P450 (1A2) and the heme domain of a soluble bacterial P450 (BM3). By fusing the hybrid gene library to the gene for chloramphenicol acetyl transferase (CAT), we were able to select for soluble and properly folded protein variants. Screening for 1A2 activity (deethylation of 7-ethoxyresorufin) identified two functional P450 hybrids that were more soluble in the bacterial cytoplasm than the wild-type 1A2 enzyme.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N2be741dfa92245f49ef212a6bfffc313
    51 N3e4f6d6f62f648a6a755dcd9ddd3a287
    52 sg:journal.1115214
    53 schema:name Libraries of hybrid proteins from distantly related sequences
    54 schema:pagination nbt0501_456
    55 schema:productId N2060ef45b59e4cbaadad023051af9388
    56 N2f007d0f6ff64abead4d3a105f245159
    57 N397a6a62fd594e958358c321c3fab556
    58 N43af39b2708c41c299c8336479b30789
    59 Nc0a7b661d7d845c2ab6dcc8c38d97bab
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037342386
    61 https://doi.org/10.1038/88129
    62 schema:sdDatePublished 2019-04-11T12:21
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher Naef0f3c0044946f89479b55ad9e0409e
    65 schema:url http://www.nature.com/articles/nbt0501_456
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N0efa3476087e409ba4900d5c40288cfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Recombinant Proteins
    71 rdf:type schema:DefinedTerm
    72 N1606745645bf4ee5bbd946f2471b458c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Protein Structure, Tertiary
    74 rdf:type schema:DefinedTerm
    75 N18395410e1af43038dd6d2e2f2d290f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Base Sequence
    77 rdf:type schema:DefinedTerm
    78 N1c33fbde0d59431ab0f3b13a066cfb79 rdf:first sg:person.0751754076.27
    79 rdf:rest Nbea14332b7cd4b8895442dc7f0f09b24
    80 N2060ef45b59e4cbaadad023051af9388 schema:name readcube_id
    81 schema:value b1e288acc1959338e8372400b119d1a9d260336ca9f02f54f9606aed9debec2f
    82 rdf:type schema:PropertyValue
    83 N277641f35539470dac1a6785cfb5dc32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name NADPH-Ferrihemoprotein Reductase
    85 rdf:type schema:DefinedTerm
    86 N2be741dfa92245f49ef212a6bfffc313 schema:issueNumber 5
    87 rdf:type schema:PublicationIssue
    88 N2f007d0f6ff64abead4d3a105f245159 schema:name dimensions_id
    89 schema:value pub.1037342386
    90 rdf:type schema:PropertyValue
    91 N328afa833d9243d38abb2cb33f37f2a8 rdf:first sg:person.01033414373.04
    92 rdf:rest rdf:nil
    93 N38d757e369b2454191d89436c8e44445 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Sequence Homology
    95 rdf:type schema:DefinedTerm
    96 N397a6a62fd594e958358c321c3fab556 schema:name pubmed_id
    97 schema:value 11329016
    98 rdf:type schema:PropertyValue
    99 N3af92dbaf058469a9bcda0e250d43002 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Protein Engineering
    101 rdf:type schema:DefinedTerm
    102 N3cdd299f68f34824b1e1bbd3fb2da3a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Artificial Gene Fusion
    104 rdf:type schema:DefinedTerm
    105 N3e4f6d6f62f648a6a755dcd9ddd3a287 schema:volumeNumber 19
    106 rdf:type schema:PublicationVolume
    107 N42b113edcb074f9aa9a2be024eb018bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Cytochrome P-450 CYP1A2
    109 rdf:type schema:DefinedTerm
    110 N43af39b2708c41c299c8336479b30789 schema:name doi
    111 schema:value 10.1038/88129
    112 rdf:type schema:PropertyValue
    113 N5fe87cd173f74e39a2812b40f6a2c7fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Solubility
    115 rdf:type schema:DefinedTerm
    116 N60d936530dc64b849b2cb08b9517d8e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Mixed Function Oxygenases
    118 rdf:type schema:DefinedTerm
    119 N68201f9017b542cc84e12396d5ae0ff4 schema:name Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena CA 91105.
    120 rdf:type schema:Organization
    121 N732fdfebce60418ab276a0dc75607696 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Amino Acid Sequence
    123 rdf:type schema:DefinedTerm
    124 N88779d467373400aab4d818963bf33f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Bacterial Proteins
    126 rdf:type schema:DefinedTerm
    127 N8aad087e8f9e49feb0730cd283d50d33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Humans
    129 rdf:type schema:DefinedTerm
    130 N95b309e8633942a2bf449985822082df schema:name Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena CA 91105.
    131 rdf:type schema:Organization
    132 Nac913444815f4c8ba8ae3218aac5c788 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Molecular Sequence Data
    134 rdf:type schema:DefinedTerm
    135 Naef0f3c0044946f89479b55ad9e0409e schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 Nb121fdc2facf423bada0403082d32dae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Cytochrome P-450 Enzyme System
    139 rdf:type schema:DefinedTerm
    140 Nbb5c839433f5450a867db1a4a86f8b2a schema:name Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena CA 91105.
    141 rdf:type schema:Organization
    142 Nbea14332b7cd4b8895442dc7f0f09b24 rdf:first sg:person.01364353405.55
    143 rdf:rest N328afa833d9243d38abb2cb33f37f2a8
    144 Nc0a7b661d7d845c2ab6dcc8c38d97bab schema:name nlm_unique_id
    145 schema:value 9604648
    146 rdf:type schema:PropertyValue
    147 Ncdfa9066e592468c8509a284f846b9a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Gene Library
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Biological Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Biochemistry and Cell Biology
    155 rdf:type schema:DefinedTerm
    156 sg:journal.1115214 schema:issn 1087-0156
    157 1546-1696
    158 schema:name Nature Biotechnology
    159 rdf:type schema:Periodical
    160 sg:person.01033414373.04 schema:affiliation N68201f9017b542cc84e12396d5ae0ff4
    161 schema:familyName Arnold
    162 schema:givenName Frances H.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033414373.04
    164 rdf:type schema:Person
    165 sg:person.01364353405.55 schema:affiliation N95b309e8633942a2bf449985822082df
    166 schema:familyName Martinez
    167 schema:givenName Carlos A.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364353405.55
    169 rdf:type schema:Person
    170 sg:person.0751754076.27 schema:affiliation Nbb5c839433f5450a867db1a4a86f8b2a
    171 schema:familyName Sieber
    172 schema:givenName Volker
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751754076.27
    174 rdf:type schema:Person
    175 sg:pub.10.1038/10850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026933436
    176 https://doi.org/10.1038/10850
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/70754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024424823
    179 https://doi.org/10.1038/70754
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/7939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013126970
    182 https://doi.org/10.1038/7939
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nbt0398-258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017776064
    185 https://doi.org/10.1038/nbt0398-258
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nbt0897-784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032255624
    188 https://doi.org/10.1038/nbt0897-784
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1385/0-89603-519-0:181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039088764
    191 https://doi.org/10.1385/0-89603-519-0:181
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1385/0-89603-519-0:25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000219797
    194 https://doi.org/10.1385/0-89603-519-0:25
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1006/abbi.1995.1016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048121376
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1006/abbi.1996.0086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036794666
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/s0006-291x(83)80220-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021203125
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/s0065-3233(01)55002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004928410
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1021/bi00211a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055165405
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/bi972775z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055215088
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1073/pnas.91.22.10747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030966093
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1073/pnas.93.21.11591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013894302
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1073/pnas.96.20.11241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008060613
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1073/pnas.96.6.2591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044223297
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1089/dna.1985.4.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059250775
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1093/nar/26.2.681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006249974
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/nar/27.18.e18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059931857
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1093/nar/27.18.e18-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1018243538
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1110/ps.8.9.1908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035110099
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1111/j.1432-1033.1994.1005b.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022879348
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1146/annurev.bb.20.060191.002051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018241124
    229 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...