Single-mismatch detection using gold-quenched fluorescent oligonucleotides View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

Benoit Dubertret, Michel Calame, Albert J. Libchaber

ABSTRACT

Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons. More... »

PAGES

365-370

Journal

TITLE

Nature Biotechnology

ISSUE

4

VOLUME

19

Related Patents

  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Sequence-Specific Cellular Uptake Of Spherical Nucleic Acid Nanoparticle Conjugates
  • Nucleic Acid Functionalized Nonoparticles For Therapeutic Applications
  • Methods To Increase Nucleotide Signals By Raman Scattering
  • Nano-Constructs For Polynucleotide Delivery
  • Binding-Induced Dna Nanomachines
  • Methods And Device For Dna Sequencing Using Surface Enhanced Raman Scattering (Sers)
  • Method For Cell Identification And Cell Sorting
  • Method Using A Nonlinear Optical Technique For Detection Of Interactions Involving A Conformational Change
  • Method Of Identifying Hairpin Dna Probes By Partial Fold Analysis
  • Fuel Cell Start Up Method
  • A Gold Nanoparticle Based Protease Imaging Probes And Use Thereof
  • Using A Recombinase To Mediate Formation Of A Deproteinization-Stable Double D Loop In The Query Region Of The Target That Favor Formation At Target Query Region Over Formation At Variants That Differ From The Target By Few
  • Nucleic Acid Molecule Characterized By Being Able To Self-Anneal Into A Hairpin Conformation, And Hybridizes To A Target Nucleic Acid That Is Unique To Methicillin-Resistant Staphylococcus Spp; Sensor Chip That Includes A Fluorescence Quenching Surface And Nucleic Acid Molecules
  • Nanoconjugates Able To Cross The Blood-Brain Barrier
  • Functionalized Metal Nanoparticles And Uses Thereof For Detecting Nucleic Acids
  • Delivery Of Oligonucleotide Functionalized Nanoparticles
  • A Gold Nanoparticle Based Protease Imaging Probes And Use Thereof
  • Methods And Materials Using Signaling Probes
  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Templated Nanoconjugates
  • Polyvalent Rna-Nanoparticle Compositions
  • Compositions And Methods Of Making Polymerizing Nucleic Acids
  • Particles For Detecting Intracellular Targets
  • Providing A Simplified, Two-Step, Strand Displacement Reaction Protocol In Which A Target Nucleic Acid Acts Catalytically To Amplify The Signal Resulting From Its Specific Hybridization To A Nucleic Acid Probe; Isothermal; Labels; Detection Means
  • Nanoconjugates Able To Cross The Blood-Brain Barrier
  • Method Of Determining Analyte Content In A Sample
  • Methods To Increase Nucleotide Signals By Raman Scattering
  • Multifunctional Magnetic Nanoparticle Probes For Intracellular Molecular Imaging And Monitoring
  • Sensors And Methods For Detecting Diseases Caused By A Single Point Mutation
  • Identifying Molecular Beacons In Which A Secondary Structure Prediction Algorithm Is Employed To Identify Oligonucleotide Sequences Within A Target Gene Having The Requisite Hairpin Structure
  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Polyvalent Rna-Nanoparticle Compositions
  • Dna Microarray Having Hairpin Probes Tethered To Nanostructured Metal Surface
  • Genomics Applications For Modified Oligo Nucleotides
  • Controllable Assembly And Disassembly Of Nanoparticle Systems Via Protein And Dna Agents
  • Particles For Detecting Intracellular Targets
  • Polyvalent Rna-Nanoparticle Compositions
  • Nonlinear Optical Detection Of Molecules Comprising An Unnatural Amino Acid Possessing A Hyperpolarizability
  • Functionalized Metal Nanoparticles And Uses Thereof For Detecting Nucleic Acids
  • Method For Cell Identification And Cell Sorting
  • Templated Nanoconjugates
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/86762

    DOI

    http://dx.doi.org/10.1038/86762

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040395283

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11283596


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Pair Mismatch", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binding, Competitive", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Single-Stranded", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dose-Response Relationship, Drug", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescent Dyes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gold", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dubertret", 
            "givenName": "Benoit", 
            "id": "sg:person.01010753002.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010753002.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY", 
                "Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Calame", 
            "givenName": "Michel", 
            "id": "sg:person.01275073050.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275073050.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Libchaber", 
            "givenName": "Albert J.", 
            "id": "sg:person.01052257772.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052257772.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4757-3061-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034475674", 
              "https://doi.org/10.1007/978-1-4757-3061-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382609a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013811778", 
              "https://doi.org/10.1038/382609a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863531", 
              "https://doi.org/10.1038/35015043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/72006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024163161", 
              "https://doi.org/10.1038/72006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0198-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027516191", 
              "https://doi.org/10.1038/nbt0198-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-09109-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027780347", 
              "https://doi.org/10.1007/978-3-662-09109-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0396-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007118508", 
              "https://doi.org/10.1038/nbt0396-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382607a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030717946", 
              "https://doi.org/10.1038/382607a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-04", 
        "datePublishedReg": "2001-04-01", 
        "description": "Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/86762", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "molecular beacons", 
          "single mismatch detection", 
          "competitive hybridization assay", 
          "diameter gold nanoparticles", 
          "hybrid materials", 
          "gold nanoparticles", 
          "complementary ssDNA", 
          "molecules increases", 
          "composite molecules", 
          "distance\u2010dependent processes", 
          "DNA molecules", 
          "nanoparticles", 
          "molecules", 
          "single mismatch", 
          "fluorophores", 
          "hybridization assays", 
          "ssDNA", 
          "fluorescence", 
          "beacons", 
          "fluorescent", 
          "probe", 
          "materials", 
          "detection", 
          "different types", 
          "process", 
          "assays", 
          "sensitivity", 
          "ability", 
          "mismatch", 
          "increase", 
          "types", 
          "factors"
        ], 
        "name": "Single-mismatch detection using gold-quenched fluorescent oligonucleotides", 
        "pagination": "365-370", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040395283"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/86762"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11283596"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/86762", 
          "https://app.dimensions.ai/details/publication/pub.1040395283"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_318.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/86762"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/86762'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/86762'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/86762'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/86762'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      21 PREDICATES      80 URIs      64 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/86762 schema:about N2e1a2819c59f4525863496e6aa5b7aae
    2 N3472ec1ba4d84cf1872e6a1360e1986b
    3 N8a189b9e4a454cc7acbf12f9b8c6ea8b
    4 N8ff4b095e74241ac9a658f2427bb5ca5
    5 N92f28945323b4867bb57df29b77688c4
    6 N9f6d02f88b644f26b9012349df14f2d4
    7 Nb0cfb486c53e4c4cabe8bd05fa36d311
    8 Nb5301c1c34fa417f8edf2b3dbec8947a
    9 Nb74e4f6f12b94e4dbe6cef429157bb23
    10 Nc6eca544b3714282921415543547bbc5
    11 Nd33fc791dec44fd996f1c661f67313bd
    12 Nf4e28ffd7c5641be8a37f0de443addc0
    13 Nf90c0813386042999fccbc544c7b4879
    14 Nfc8e29d6c1f4471d91289dc86478f352
    15 anzsrc-for:03
    16 anzsrc-for:0306
    17 schema:author N354d4a053f3e4f1ba15e7289491a6449
    18 schema:citation sg:pub.10.1007/978-1-4757-3061-6
    19 sg:pub.10.1007/978-3-662-09109-8
    20 sg:pub.10.1038/35015043
    21 sg:pub.10.1038/382607a0
    22 sg:pub.10.1038/382609a0
    23 sg:pub.10.1038/72006
    24 sg:pub.10.1038/nbt0198-49
    25 sg:pub.10.1038/nbt0396-303
    26 schema:datePublished 2001-04
    27 schema:datePublishedReg 2001-04-01
    28 schema:description Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons.
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf Nb030e2507d5740d888a5770748fbbf31
    32 Nfaca17ade0a74e91a52cffebfa731079
    33 sg:journal.1115214
    34 schema:keywords DNA molecules
    35 ability
    36 assays
    37 beacons
    38 competitive hybridization assay
    39 complementary ssDNA
    40 composite molecules
    41 detection
    42 diameter gold nanoparticles
    43 different types
    44 distance‚Äźdependent processes
    45 factors
    46 fluorescence
    47 fluorescent
    48 fluorophores
    49 gold nanoparticles
    50 hybrid materials
    51 hybridization assays
    52 increase
    53 materials
    54 mismatch
    55 molecular beacons
    56 molecules
    57 molecules increases
    58 nanoparticles
    59 probe
    60 process
    61 sensitivity
    62 single mismatch
    63 single mismatch detection
    64 ssDNA
    65 types
    66 schema:name Single-mismatch detection using gold-quenched fluorescent oligonucleotides
    67 schema:pagination 365-370
    68 schema:productId N53f7da5499804a87997efab8cfe21dc2
    69 Nb8b4ff85cf81448f93da0e79e3af50d3
    70 Ne7eaabbaf9464773a417036603a50595
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040395283
    72 https://doi.org/10.1038/86762
    73 schema:sdDatePublished 2022-09-02T15:48
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N3bd1cba146454de5993b84067c6ce981
    76 schema:url https://doi.org/10.1038/86762
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N0301082b900b400f9efd4a94f657b490 rdf:first sg:person.01275073050.85
    81 rdf:rest N07e4ec2d73b14d1da4e251cd6abb8fdc
    82 N07e4ec2d73b14d1da4e251cd6abb8fdc rdf:first sg:person.01052257772.32
    83 rdf:rest rdf:nil
    84 N2e1a2819c59f4525863496e6aa5b7aae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Binding, Competitive
    86 rdf:type schema:DefinedTerm
    87 N3472ec1ba4d84cf1872e6a1360e1986b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Dose-Response Relationship, Drug
    89 rdf:type schema:DefinedTerm
    90 N354d4a053f3e4f1ba15e7289491a6449 rdf:first sg:person.01010753002.99
    91 rdf:rest N0301082b900b400f9efd4a94f657b490
    92 N3bd1cba146454de5993b84067c6ce981 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N53f7da5499804a87997efab8cfe21dc2 schema:name pubmed_id
    95 schema:value 11283596
    96 rdf:type schema:PropertyValue
    97 N8a189b9e4a454cc7acbf12f9b8c6ea8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Protein Binding
    99 rdf:type schema:DefinedTerm
    100 N8ff4b095e74241ac9a658f2427bb5ca5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Genetic Techniques
    102 rdf:type schema:DefinedTerm
    103 N92f28945323b4867bb57df29b77688c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Base Sequence
    105 rdf:type schema:DefinedTerm
    106 N9f6d02f88b644f26b9012349df14f2d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Nucleic Acid Hybridization
    108 rdf:type schema:DefinedTerm
    109 Nb030e2507d5740d888a5770748fbbf31 schema:volumeNumber 19
    110 rdf:type schema:PublicationVolume
    111 Nb0cfb486c53e4c4cabe8bd05fa36d311 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Gold
    113 rdf:type schema:DefinedTerm
    114 Nb5301c1c34fa417f8edf2b3dbec8947a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Fluorescent Dyes
    116 rdf:type schema:DefinedTerm
    117 Nb74e4f6f12b94e4dbe6cef429157bb23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Base Pair Mismatch
    119 rdf:type schema:DefinedTerm
    120 Nb8b4ff85cf81448f93da0e79e3af50d3 schema:name doi
    121 schema:value 10.1038/86762
    122 rdf:type schema:PropertyValue
    123 Nc6eca544b3714282921415543547bbc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Molecular Sequence Data
    125 rdf:type schema:DefinedTerm
    126 Nd33fc791dec44fd996f1c661f67313bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name DNA, Single-Stranded
    128 rdf:type schema:DefinedTerm
    129 Ne7eaabbaf9464773a417036603a50595 schema:name dimensions_id
    130 schema:value pub.1040395283
    131 rdf:type schema:PropertyValue
    132 Nf4e28ffd7c5641be8a37f0de443addc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Protein Conformation
    134 rdf:type schema:DefinedTerm
    135 Nf90c0813386042999fccbc544c7b4879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Time Factors
    137 rdf:type schema:DefinedTerm
    138 Nfaca17ade0a74e91a52cffebfa731079 schema:issueNumber 4
    139 rdf:type schema:PublicationIssue
    140 Nfc8e29d6c1f4471d91289dc86478f352 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Oligonucleotides
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Chemical Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Physical Chemistry (incl. Structural)
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1115214 schema:issn 1087-0156
    150 1546-1696
    151 schema:name Nature Biotechnology
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.01010753002.99 schema:affiliation grid-institutes:grid.134907.8
    155 schema:familyName Dubertret
    156 schema:givenName Benoit
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010753002.99
    158 rdf:type schema:Person
    159 sg:person.01052257772.32 schema:affiliation grid-institutes:grid.134907.8
    160 schema:familyName Libchaber
    161 schema:givenName Albert J.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052257772.32
    163 rdf:type schema:Person
    164 sg:person.01275073050.85 schema:affiliation grid-institutes:None
    165 schema:familyName Calame
    166 schema:givenName Michel
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275073050.85
    168 rdf:type schema:Person
    169 sg:pub.10.1007/978-1-4757-3061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034475674
    170 https://doi.org/10.1007/978-1-4757-3061-6
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-3-662-09109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780347
    173 https://doi.org/10.1007/978-3-662-09109-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/35015043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006863531
    176 https://doi.org/10.1038/35015043
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
    179 https://doi.org/10.1038/382607a0
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
    182 https://doi.org/10.1038/382609a0
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/72006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163161
    185 https://doi.org/10.1038/72006
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nbt0198-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516191
    188 https://doi.org/10.1038/nbt0198-49
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nbt0396-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118508
    191 https://doi.org/10.1038/nbt0396-303
    192 rdf:type schema:CreativeWork
    193 grid-institutes:None schema:alternateName Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    194 schema:name Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY
    195 Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    196 rdf:type schema:Organization
    197 grid-institutes:grid.134907.8 schema:alternateName Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY
    198 schema:name Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...