Single-mismatch detection using gold-quenched fluorescent oligonucleotides View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

Benoit Dubertret, Michel Calame, Albert J. Libchaber

ABSTRACT

Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons. More... »

PAGES

365-370

Journal

TITLE

Nature Biotechnology

ISSUE

4

VOLUME

19

Related Patents

  • Binding-Induced Dna Nanomachines
  • Sequence-Specific Cellular Uptake Of Spherical Nucleic Acid Nanoparticle Conjugates
  • Nano-Constructs For Polynucleotide Delivery
  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Method Of Identifying Hairpin Dna Probes By Partial Fold Analysis
  • Method For Cell Identification And Cell Sorting
  • Methods To Increase Nucleotide Signals By Raman Scattering
  • Method Using A Nonlinear Optical Technique For Detection Of Interactions Involving A Conformational Change
  • Nucleic Acid Functionalized Nonoparticles For Therapeutic Applications
  • Methods And Device For Dna Sequencing Using Surface Enhanced Raman Scattering (Sers)
  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Delivery Of Oligonucleotide Functionalized Nanoparticles
  • A Gold Nanoparticle Based Protease Imaging Probes And Use Thereof
  • A Gold Nanoparticle Based Protease Imaging Probes And Use Thereof
  • Fuel Cell Start Up Method
  • Nanoconjugates Able To Cross The Blood-Brain Barrier
  • Functionalized Metal Nanoparticles And Uses Thereof For Detecting Nucleic Acids
  • Methods And Materials Using Signaling Probes
  • Nucleic Acid Molecule Characterized By Being Able To Self-Anneal Into A Hairpin Conformation, And Hybridizes To A Target Nucleic Acid That Is Unique To Methicillin-Resistant Staphylococcus Spp; Sensor Chip That Includes A Fluorescence Quenching Surface And Nucleic Acid Molecules
  • Using A Recombinase To Mediate Formation Of A Deproteinization-Stable Double D Loop In The Query Region Of The Target That Favor Formation At Target Query Region Over Formation At Variants That Differ From The Target By Few
  • Templated Nanoconjugates
  • Method Of Determining Analyte Content In A Sample
  • Nanoconjugates Able To Cross The Blood-Brain Barrier
  • Particles For Detecting Intracellular Targets
  • Polyvalent Rna-Nanoparticle Compositions
  • Compositions And Methods Of Making Polymerizing Nucleic Acids
  • Providing A Simplified, Two-Step, Strand Displacement Reaction Protocol In Which A Target Nucleic Acid Acts Catalytically To Amplify The Signal Resulting From Its Specific Hybridization To A Nucleic Acid Probe; Isothermal; Labels; Detection Means
  • Sensors And Methods For Detecting Diseases Caused By A Single Point Mutation
  • Multifunctional Magnetic Nanoparticle Probes For Intracellular Molecular Imaging And Monitoring
  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Methods To Increase Nucleotide Signals By Raman Scattering
  • Polyvalent Rna-Nanoparticle Compositions
  • Nucleic Acid Functionalized Nanoparticles For Therapeutic Applications
  • Identifying Molecular Beacons In Which A Secondary Structure Prediction Algorithm Is Employed To Identify Oligonucleotide Sequences Within A Target Gene Having The Requisite Hairpin Structure
  • Particles For Detecting Intracellular Targets
  • Method For Cell Identification And Cell Sorting
  • Nonlinear Optical Detection Of Molecules Comprising An Unnatural Amino Acid Possessing A Hyperpolarizability
  • Controllable Assembly And Disassembly Of Nanoparticle Systems Via Protein And Dna Agents
  • Functionalized Metal Nanoparticles And Uses Thereof For Detecting Nucleic Acids
  • Genomics Applications For Modified Oligo Nucleotides
  • Polyvalent Rna-Nanoparticle Compositions
  • Dna Microarray Having Hairpin Probes Tethered To Nanostructured Metal Surface
  • Templated Nanoconjugates
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/86762

    DOI

    http://dx.doi.org/10.1038/86762

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040395283

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11283596


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Pair Mismatch", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binding, Competitive", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Single-Stranded", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dose-Response Relationship, Drug", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescent Dyes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gold", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dubertret", 
            "givenName": "Benoit", 
            "id": "sg:person.01010753002.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010753002.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY", 
                "Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Calame", 
            "givenName": "Michel", 
            "id": "sg:person.01275073050.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275073050.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Libchaber", 
            "givenName": "Albert J.", 
            "id": "sg:person.01052257772.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052257772.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35015043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863531", 
              "https://doi.org/10.1038/35015043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0198-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027516191", 
              "https://doi.org/10.1038/nbt0198-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382609a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013811778", 
              "https://doi.org/10.1038/382609a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0396-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007118508", 
              "https://doi.org/10.1038/nbt0396-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/72006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024163161", 
              "https://doi.org/10.1038/72006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-09109-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027780347", 
              "https://doi.org/10.1007/978-3-662-09109-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382607a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030717946", 
              "https://doi.org/10.1038/382607a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3061-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034475674", 
              "https://doi.org/10.1007/978-1-4757-3061-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-04", 
        "datePublishedReg": "2001-04-01", 
        "description": "Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/86762", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "molecular beacons", 
          "single mismatch detection", 
          "competitive hybridization assay", 
          "diameter gold nanoparticles", 
          "hybrid materials", 
          "gold nanoparticles", 
          "complementary ssDNA", 
          "molecules increases", 
          "composite molecules", 
          "distance\u2010dependent processes", 
          "DNA molecules", 
          "nanoparticles", 
          "molecules", 
          "single mismatch", 
          "fluorophores", 
          "hybridization assays", 
          "ssDNA", 
          "fluorescence", 
          "beacons", 
          "fluorescent", 
          "probe", 
          "materials", 
          "detection", 
          "different types", 
          "process", 
          "assays", 
          "sensitivity", 
          "ability", 
          "mismatch", 
          "increase", 
          "types", 
          "factors"
        ], 
        "name": "Single-mismatch detection using gold-quenched fluorescent oligonucleotides", 
        "pagination": "365-370", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040395283"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/86762"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11283596"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/86762", 
          "https://app.dimensions.ai/details/publication/pub.1040395283"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_330.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/86762"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/86762'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/86762'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/86762'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/86762'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      21 PREDICATES      80 URIs      64 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/86762 schema:about N1120387e494f45cda6d23e2efabce29b
    2 N275bab89a2894ba4858a93d007313677
    3 N2c69fcc07be948a9a0da19f6755051ce
    4 N7e60c8ed74b04449ae5f9c2c9b202995
    5 N866de89945cb44e1968d8d4fb6fbd8d9
    6 Naaf7b93ef63e4805b8b844328ca194f4
    7 Nabfa2f3c02484788b015144c82d90203
    8 Nb76d0db0910d45a78395724f9d86c33c
    9 Nb7a323d60d8c4c2397efd0b64327be50
    10 Nbe49bbd3a18f452986e7e005caf98fd1
    11 Nc602f1668fb6470fb11269060244d6e0
    12 Ne452123518ad413e80db33216e2e7c21
    13 Nf78bb1795c6a40118bc0d7b1342de0c3
    14 Nfe6353bb3cb64d22a777499510d35931
    15 anzsrc-for:03
    16 anzsrc-for:0306
    17 schema:author Ne3f489a077ab455eb4bb67ff0294e815
    18 schema:citation sg:pub.10.1007/978-1-4757-3061-6
    19 sg:pub.10.1007/978-3-662-09109-8
    20 sg:pub.10.1038/35015043
    21 sg:pub.10.1038/382607a0
    22 sg:pub.10.1038/382609a0
    23 sg:pub.10.1038/72006
    24 sg:pub.10.1038/nbt0198-49
    25 sg:pub.10.1038/nbt0396-303
    26 schema:datePublished 2001-04
    27 schema:datePublishedReg 2001-04-01
    28 schema:description Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons.
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N0aef5430034847bf8e69a1828c33a8a2
    32 N3d6cd41524b3489f8d1053a131feb013
    33 sg:journal.1115214
    34 schema:keywords DNA molecules
    35 ability
    36 assays
    37 beacons
    38 competitive hybridization assay
    39 complementary ssDNA
    40 composite molecules
    41 detection
    42 diameter gold nanoparticles
    43 different types
    44 distance‚Äźdependent processes
    45 factors
    46 fluorescence
    47 fluorescent
    48 fluorophores
    49 gold nanoparticles
    50 hybrid materials
    51 hybridization assays
    52 increase
    53 materials
    54 mismatch
    55 molecular beacons
    56 molecules
    57 molecules increases
    58 nanoparticles
    59 probe
    60 process
    61 sensitivity
    62 single mismatch
    63 single mismatch detection
    64 ssDNA
    65 types
    66 schema:name Single-mismatch detection using gold-quenched fluorescent oligonucleotides
    67 schema:pagination 365-370
    68 schema:productId N1489eb9fd5fb4f8ab10f8a50c17bd909
    69 N3df8bdc4d1b84c27aa72bdddc0df1903
    70 Na411387310ef4e568a7a1b55e9ff2294
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040395283
    72 https://doi.org/10.1038/86762
    73 schema:sdDatePublished 2022-10-01T06:31
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N642714604e0c486fb3c2e8d98fba0796
    76 schema:url https://doi.org/10.1038/86762
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N0aef5430034847bf8e69a1828c33a8a2 schema:issueNumber 4
    81 rdf:type schema:PublicationIssue
    82 N1120387e494f45cda6d23e2efabce29b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Genetic Techniques
    84 rdf:type schema:DefinedTerm
    85 N1489eb9fd5fb4f8ab10f8a50c17bd909 schema:name doi
    86 schema:value 10.1038/86762
    87 rdf:type schema:PropertyValue
    88 N275bab89a2894ba4858a93d007313677 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Dose-Response Relationship, Drug
    90 rdf:type schema:DefinedTerm
    91 N2c69fcc07be948a9a0da19f6755051ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Base Sequence
    93 rdf:type schema:DefinedTerm
    94 N3d6cd41524b3489f8d1053a131feb013 schema:volumeNumber 19
    95 rdf:type schema:PublicationVolume
    96 N3df8bdc4d1b84c27aa72bdddc0df1903 schema:name dimensions_id
    97 schema:value pub.1040395283
    98 rdf:type schema:PropertyValue
    99 N44ea3084bc4d4c91b8d7cd41174a8ff7 rdf:first sg:person.01052257772.32
    100 rdf:rest rdf:nil
    101 N642714604e0c486fb3c2e8d98fba0796 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N7e60c8ed74b04449ae5f9c2c9b202995 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Protein Conformation
    105 rdf:type schema:DefinedTerm
    106 N866de89945cb44e1968d8d4fb6fbd8d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Fluorescent Dyes
    108 rdf:type schema:DefinedTerm
    109 Na411387310ef4e568a7a1b55e9ff2294 schema:name pubmed_id
    110 schema:value 11283596
    111 rdf:type schema:PropertyValue
    112 Naaf7b93ef63e4805b8b844328ca194f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Gold
    114 rdf:type schema:DefinedTerm
    115 Nabfa2f3c02484788b015144c82d90203 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Protein Binding
    117 rdf:type schema:DefinedTerm
    118 Nb76d0db0910d45a78395724f9d86c33c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Binding, Competitive
    120 rdf:type schema:DefinedTerm
    121 Nb7a323d60d8c4c2397efd0b64327be50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Molecular Sequence Data
    123 rdf:type schema:DefinedTerm
    124 Nbe49bbd3a18f452986e7e005caf98fd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Time Factors
    126 rdf:type schema:DefinedTerm
    127 Nc602f1668fb6470fb11269060244d6e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name DNA, Single-Stranded
    129 rdf:type schema:DefinedTerm
    130 Nc978afb624bb435da5e83fda457d5d78 rdf:first sg:person.01275073050.85
    131 rdf:rest N44ea3084bc4d4c91b8d7cd41174a8ff7
    132 Ne3f489a077ab455eb4bb67ff0294e815 rdf:first sg:person.01010753002.99
    133 rdf:rest Nc978afb624bb435da5e83fda457d5d78
    134 Ne452123518ad413e80db33216e2e7c21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Base Pair Mismatch
    136 rdf:type schema:DefinedTerm
    137 Nf78bb1795c6a40118bc0d7b1342de0c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Nucleic Acid Hybridization
    139 rdf:type schema:DefinedTerm
    140 Nfe6353bb3cb64d22a777499510d35931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Oligonucleotides
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Chemical Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Physical Chemistry (incl. Structural)
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1115214 schema:issn 1087-0156
    150 1546-1696
    151 schema:name Nature Biotechnology
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.01010753002.99 schema:affiliation grid-institutes:grid.134907.8
    155 schema:familyName Dubertret
    156 schema:givenName Benoit
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010753002.99
    158 rdf:type schema:Person
    159 sg:person.01052257772.32 schema:affiliation grid-institutes:grid.134907.8
    160 schema:familyName Libchaber
    161 schema:givenName Albert J.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052257772.32
    163 rdf:type schema:Person
    164 sg:person.01275073050.85 schema:affiliation grid-institutes:None
    165 schema:familyName Calame
    166 schema:givenName Michel
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275073050.85
    168 rdf:type schema:Person
    169 sg:pub.10.1007/978-1-4757-3061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034475674
    170 https://doi.org/10.1007/978-1-4757-3061-6
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-3-662-09109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780347
    173 https://doi.org/10.1007/978-3-662-09109-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/35015043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006863531
    176 https://doi.org/10.1038/35015043
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
    179 https://doi.org/10.1038/382607a0
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
    182 https://doi.org/10.1038/382609a0
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/72006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163161
    185 https://doi.org/10.1038/72006
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nbt0198-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516191
    188 https://doi.org/10.1038/nbt0198-49
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nbt0396-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118508
    191 https://doi.org/10.1038/nbt0396-303
    192 rdf:type schema:CreativeWork
    193 grid-institutes:None schema:alternateName Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    194 schema:name Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY
    195 Institute of Physics, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    196 rdf:type schema:Organization
    197 grid-institutes:grid.134907.8 schema:alternateName Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY
    198 schema:name Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10021, New York, NY
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...