Regulatory element detection using correlation with expression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-02

AUTHORS

Harmen J. Bussemaker, Hao Li, Eric D. Siggia

ABSTRACT

We present here a new computational method for discovering cis-regulatory elements that circumvents the need to cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance. More... »

PAGES

ng0201_167

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/84792

DOI

http://dx.doi.org/10.1038/84792

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017237252

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11175784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Cycle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consensus Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Minichromosome Maintenance 1 Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Sequences, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bussemaker", 
        "givenName": "Harmen J.", 
        "id": "sg:person.01043745150.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043745150.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siggia", 
        "givenName": "Eric D.", 
        "id": "sg:person.01351724464.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724464.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0960-9822(07)00557-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002367576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/990025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003035083", 
          "https://doi.org/10.1038/990025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/990025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003035083", 
          "https://doi.org/10.1038/990025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(87)90354-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003110840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/299432.299448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009567661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/299432.299448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009567661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.10.5.2437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012109915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.9.12.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014767256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81641-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019018406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1998.1947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023454254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1097-2765(00)80114-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027451892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560040820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035847613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/387067a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037338248", 
          "https://doi.org/10.1038/387067a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5463.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045941060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5389.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047652778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1098-939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049107556", 
          "https://doi.org/10.1038/nbt1098-939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8211139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1989.tb08612.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079225976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7.10.959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083159136"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-02", 
    "datePublishedReg": "2001-02-01", 
    "description": "We present here a new computational method for discovering cis-regulatory elements that circumvents the need to cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/84792", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3003769", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Regulatory element detection using correlation with expression", 
    "pagination": "ng0201_167", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52203b7947c515886919ebe063d83ad0c638e18fbe0f90bc3b5519b9d62623c4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11175784"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/84792"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017237252"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/84792", 
      "https://app.dimensions.ai/details/publication/pub.1017237252"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ng0201_167"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/84792'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/84792'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/84792'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/84792'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      63 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/84792 schema:about N02485098ba7d4ef5ac7da3f661e25756
2 N1247676f742d426e9fb8230e6df3a5dc
3 N441b56538bf5468c8b4a0b2b73ce2763
4 N52e9f49e055446249cf8e72014b6fd43
5 N533929ad98164fc6b124ab100c5acf5e
6 N5eea6d684fd049cea4e937050f90c450
7 Na5f4388b03934f52a50409e4831db66c
8 Nb0c6e7244b7f43deb416a35d9f53234c
9 Nd5739e7aba884d42aa704545ce3f63b0
10 Nda007fbd6773480893b22d49778a28ad
11 Nfab6037a69424604a46f34d9b6abe050
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N32109fa00f9049d39ed73d8356f296b5
15 schema:citation sg:pub.10.1038/10343
16 sg:pub.10.1038/387067a0
17 sg:pub.10.1038/990025
18 sg:pub.10.1038/nbt1098-939
19 sg:pub.10.1038/nbt1296-1675
20 https://doi.org/10.1002/j.1460-2075.1989.tb08612.x
21 https://doi.org/10.1002/pro.5560040820
22 https://doi.org/10.1006/jmbi.1998.1947
23 https://doi.org/10.1016/0022-2836(87)90354-8
24 https://doi.org/10.1016/s0092-8674(00)81641-4
25 https://doi.org/10.1016/s0960-9822(07)00557-x
26 https://doi.org/10.1016/s1097-2765(00)80114-8
27 https://doi.org/10.1073/pnas.95.25.14863
28 https://doi.org/10.1091/mbc.9.12.3273
29 https://doi.org/10.1101/gr.7.10.959
30 https://doi.org/10.1126/science.270.5235.467
31 https://doi.org/10.1126/science.270.5235.484
32 https://doi.org/10.1126/science.278.5338.680
33 https://doi.org/10.1126/science.282.5389.699
34 https://doi.org/10.1126/science.288.5463.136
35 https://doi.org/10.1126/science.8211139
36 https://doi.org/10.1128/mcb.10.5.2437
37 https://doi.org/10.1145/299432.299448
38 schema:datePublished 2001-02
39 schema:datePublishedReg 2001-02-01
40 schema:description We present here a new computational method for discovering cis-regulatory elements that circumvents the need to cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf Nca9258a0b6f64ecd870e993440bb376c
45 Nd46459921e9049c9ba226be72c97d3fe
46 sg:journal.1103138
47 schema:name Regulatory element detection using correlation with expression
48 schema:pagination ng0201_167
49 schema:productId N00f22546f3a8483ba609d7c74c2fe701
50 N07fc958f351d432baf5e81b9577bdd61
51 N884750f4a5564c42863b4baefe1d14a2
52 N9ab821b730d64dc88b274e460078d322
53 Nfcde18d83a494a2e9ee22cab5418f62e
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017237252
55 https://doi.org/10.1038/84792
56 schema:sdDatePublished 2019-04-11T12:26
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nb5c2172388c24502ba3a27cf41923b6f
59 schema:url http://www.nature.com/articles/ng0201_167
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N00f22546f3a8483ba609d7c74c2fe701 schema:name nlm_unique_id
64 schema:value 9216904
65 rdf:type schema:PropertyValue
66 N02485098ba7d4ef5ac7da3f661e25756 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Algorithms
68 rdf:type schema:DefinedTerm
69 N07fc958f351d432baf5e81b9577bdd61 schema:name doi
70 schema:value 10.1038/84792
71 rdf:type schema:PropertyValue
72 N1247676f742d426e9fb8230e6df3a5dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Minichromosome Maintenance 1 Protein
74 rdf:type schema:DefinedTerm
75 N32109fa00f9049d39ed73d8356f296b5 rdf:first sg:person.01043745150.99
76 rdf:rest N8906bf2c19e84ed395ff181ac624dc86
77 N3c871bd8f0314c8c91c7d41ea3c5c339 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
78 schema:familyName Li
79 schema:givenName Hao
80 rdf:type schema:Person
81 N441b56538bf5468c8b4a0b2b73ce2763 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name DNA-Binding Proteins
83 rdf:type schema:DefinedTerm
84 N52e9f49e055446249cf8e72014b6fd43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Transcription Factors
86 rdf:type schema:DefinedTerm
87 N533929ad98164fc6b124ab100c5acf5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Consensus Sequence
89 rdf:type schema:DefinedTerm
90 N5eea6d684fd049cea4e937050f90c450 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Theoretical
92 rdf:type schema:DefinedTerm
93 N61814fd13d914db382f0e403a6ae34e4 rdf:first sg:person.01351724464.27
94 rdf:rest rdf:nil
95 N884750f4a5564c42863b4baefe1d14a2 schema:name readcube_id
96 schema:value 52203b7947c515886919ebe063d83ad0c638e18fbe0f90bc3b5519b9d62623c4
97 rdf:type schema:PropertyValue
98 N8906bf2c19e84ed395ff181ac624dc86 rdf:first N3c871bd8f0314c8c91c7d41ea3c5c339
99 rdf:rest N61814fd13d914db382f0e403a6ae34e4
100 N9ab821b730d64dc88b274e460078d322 schema:name dimensions_id
101 schema:value pub.1017237252
102 rdf:type schema:PropertyValue
103 Na5f4388b03934f52a50409e4831db66c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Cell Cycle
105 rdf:type schema:DefinedTerm
106 Nb0c6e7244b7f43deb416a35d9f53234c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Binding Sites
108 rdf:type schema:DefinedTerm
109 Nb5c2172388c24502ba3a27cf41923b6f schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nca9258a0b6f64ecd870e993440bb376c schema:volumeNumber 27
112 rdf:type schema:PublicationVolume
113 Nd46459921e9049c9ba226be72c97d3fe schema:issueNumber 2
114 rdf:type schema:PublicationIssue
115 Nd5739e7aba884d42aa704545ce3f63b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Regulatory Sequences, Nucleic Acid
117 rdf:type schema:DefinedTerm
118 Nda007fbd6773480893b22d49778a28ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gene Expression Regulation, Fungal
120 rdf:type schema:DefinedTerm
121 Nfab6037a69424604a46f34d9b6abe050 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Saccharomyces cerevisiae
123 rdf:type schema:DefinedTerm
124 Nfcde18d83a494a2e9ee22cab5418f62e schema:name pubmed_id
125 schema:value 11175784
126 rdf:type schema:PropertyValue
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
131 schema:name Genetics
132 rdf:type schema:DefinedTerm
133 sg:grant.3003769 http://pending.schema.org/fundedItem sg:pub.10.1038/84792
134 rdf:type schema:MonetaryGrant
135 sg:journal.1103138 schema:issn 1061-4036
136 1546-1718
137 schema:name Nature Genetics
138 rdf:type schema:Periodical
139 sg:person.01043745150.99 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
140 schema:familyName Bussemaker
141 schema:givenName Harmen J.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043745150.99
143 rdf:type schema:Person
144 sg:person.01351724464.27 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
145 schema:familyName Siggia
146 schema:givenName Eric D.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724464.27
148 rdf:type schema:Person
149 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
150 https://doi.org/10.1038/10343
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/387067a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037338248
153 https://doi.org/10.1038/387067a0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/990025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003035083
156 https://doi.org/10.1038/990025
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nbt1098-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107556
159 https://doi.org/10.1038/nbt1098-939
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
162 https://doi.org/10.1038/nbt1296-1675
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/j.1460-2075.1989.tb08612.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079225976
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/pro.5560040820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035847613
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1006/jmbi.1998.1947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023454254
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0022-2836(87)90354-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003110840
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0092-8674(00)81641-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019018406
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0960-9822(07)00557-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002367576
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s1097-2765(00)80114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451892
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1101/gr.7.10.959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083159136
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.282.5389.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047652778
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.288.5463.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045941060
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.8211139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653653
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1128/mcb.10.5.2437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012109915
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/299432.299448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009567661
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.134907.8 schema:alternateName Rockefeller University
201 schema:name Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA.
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...