Regulatory element detection using correlation with expression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-02

AUTHORS

Harmen J. Bussemaker, Hao Li, Eric D. Siggia

ABSTRACT

We present here a new computational method for discovering cis-regulatory elements that circumvents the need to cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance. More... »

PAGES

ng0201_167

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/84792

DOI

http://dx.doi.org/10.1038/84792

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017237252

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11175784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Cycle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consensus Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Minichromosome Maintenance 1 Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Sequences, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bussemaker", 
        "givenName": "Harmen J.", 
        "id": "sg:person.01043745150.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043745150.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rockefeller University", 
          "id": "https://www.grid.ac/institutes/grid.134907.8", 
          "name": [
            "Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siggia", 
        "givenName": "Eric D.", 
        "id": "sg:person.01351724464.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724464.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0960-9822(07)00557-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002367576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/990025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003035083", 
          "https://doi.org/10.1038/990025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/990025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003035083", 
          "https://doi.org/10.1038/990025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(87)90354-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003110840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/299432.299448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009567661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/299432.299448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009567661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.10.5.2437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012109915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.9.12.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014767256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81641-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019018406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1998.1947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023454254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1097-2765(00)80114-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027451892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560040820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035847613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/387067a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037338248", 
          "https://doi.org/10.1038/387067a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5463.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045941060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5389.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047652778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1098-939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049107556", 
          "https://doi.org/10.1038/nbt1098-939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8211139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1989.tb08612.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079225976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7.10.959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083159136"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-02", 
    "datePublishedReg": "2001-02-01", 
    "description": "We present here a new computational method for discovering cis-regulatory elements that circumvents the need to cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/84792", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3003769", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103138", 
        "issn": [
          "1061-4036", 
          "1546-1718"
        ], 
        "name": "Nature Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Regulatory element detection using correlation with expression", 
    "pagination": "ng0201_167", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52203b7947c515886919ebe063d83ad0c638e18fbe0f90bc3b5519b9d62623c4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11175784"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9216904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/84792"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017237252"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/84792", 
      "https://app.dimensions.ai/details/publication/pub.1017237252"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ng0201_167"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/84792'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/84792'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/84792'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/84792'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      63 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/84792 schema:about N03a1b743232e499d969c6ee8579b1628
2 N37c1ed084ca24f1b8d242665c20ea27e
3 N7e1baa20e27149e58632edd8c6c376bc
4 N90392307fde84d0e9bc63dc30b5bf997
5 Na70af89002944c8cb5699c1072b2a384
6 Nbe31b663b5364df187a1e4f628a48ce8
7 Nd5e17698433749cc8974dca927674699
8 Nd6114c4639274c0abb47929be08e9ea2
9 Nd7b2d314b34d40fb92179d8fa7854c47
10 Ndbfc013d50fa4dd097da020cbf2d24be
11 Nf21a5f95b36040deaeafefa96b856169
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N95565cdcf2784ecc9eca889ad43ae914
15 schema:citation sg:pub.10.1038/10343
16 sg:pub.10.1038/387067a0
17 sg:pub.10.1038/990025
18 sg:pub.10.1038/nbt1098-939
19 sg:pub.10.1038/nbt1296-1675
20 https://doi.org/10.1002/j.1460-2075.1989.tb08612.x
21 https://doi.org/10.1002/pro.5560040820
22 https://doi.org/10.1006/jmbi.1998.1947
23 https://doi.org/10.1016/0022-2836(87)90354-8
24 https://doi.org/10.1016/s0092-8674(00)81641-4
25 https://doi.org/10.1016/s0960-9822(07)00557-x
26 https://doi.org/10.1016/s1097-2765(00)80114-8
27 https://doi.org/10.1073/pnas.95.25.14863
28 https://doi.org/10.1091/mbc.9.12.3273
29 https://doi.org/10.1101/gr.7.10.959
30 https://doi.org/10.1126/science.270.5235.467
31 https://doi.org/10.1126/science.270.5235.484
32 https://doi.org/10.1126/science.278.5338.680
33 https://doi.org/10.1126/science.282.5389.699
34 https://doi.org/10.1126/science.288.5463.136
35 https://doi.org/10.1126/science.8211139
36 https://doi.org/10.1128/mcb.10.5.2437
37 https://doi.org/10.1145/299432.299448
38 schema:datePublished 2001-02
39 schema:datePublishedReg 2001-02-01
40 schema:description We present here a new computational method for discovering cis-regulatory elements that circumvents the need to cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N668f1c4dabd0493cb1205ab6510a1254
45 Nd38ca84b69b0483c94888aea6b34e149
46 sg:journal.1103138
47 schema:name Regulatory element detection using correlation with expression
48 schema:pagination ng0201_167
49 schema:productId N04092341b85b45a7b46873be65c2adfc
50 N0d2bfb72e067428985fa6c07b418652c
51 N2be26dd189b541869f864357e0c66b86
52 Naeda663a4ed34f93852c420e55aba19f
53 Ndd944b21dbdb400fbcc2c81c2dca559d
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017237252
55 https://doi.org/10.1038/84792
56 schema:sdDatePublished 2019-04-11T12:26
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N5bbb3f9d22334f7aba3e2a40f1561736
59 schema:url http://www.nature.com/articles/ng0201_167
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N03a1b743232e499d969c6ee8579b1628 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Models, Theoretical
65 rdf:type schema:DefinedTerm
66 N04092341b85b45a7b46873be65c2adfc schema:name pubmed_id
67 schema:value 11175784
68 rdf:type schema:PropertyValue
69 N0d2bfb72e067428985fa6c07b418652c schema:name nlm_unique_id
70 schema:value 9216904
71 rdf:type schema:PropertyValue
72 N26c8eaeefe7d42fdb93359f440573a0a schema:affiliation https://www.grid.ac/institutes/grid.134907.8
73 schema:familyName Li
74 schema:givenName Hao
75 rdf:type schema:Person
76 N2be26dd189b541869f864357e0c66b86 schema:name doi
77 schema:value 10.1038/84792
78 rdf:type schema:PropertyValue
79 N37c1ed084ca24f1b8d242665c20ea27e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Saccharomyces cerevisiae
81 rdf:type schema:DefinedTerm
82 N5bbb3f9d22334f7aba3e2a40f1561736 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N668f1c4dabd0493cb1205ab6510a1254 schema:volumeNumber 27
85 rdf:type schema:PublicationVolume
86 N7e1baa20e27149e58632edd8c6c376bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Cell Cycle
88 rdf:type schema:DefinedTerm
89 N90392307fde84d0e9bc63dc30b5bf997 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Consensus Sequence
91 rdf:type schema:DefinedTerm
92 N95565cdcf2784ecc9eca889ad43ae914 rdf:first sg:person.01043745150.99
93 rdf:rest Nb4c2c752c39241858f99287e66d38e39
94 Na5e8f59d91354a258c33bdccd4afd868 rdf:first sg:person.01351724464.27
95 rdf:rest rdf:nil
96 Na70af89002944c8cb5699c1072b2a384 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 Naeda663a4ed34f93852c420e55aba19f schema:name readcube_id
100 schema:value 52203b7947c515886919ebe063d83ad0c638e18fbe0f90bc3b5519b9d62623c4
101 rdf:type schema:PropertyValue
102 Nb4c2c752c39241858f99287e66d38e39 rdf:first N26c8eaeefe7d42fdb93359f440573a0a
103 rdf:rest Na5e8f59d91354a258c33bdccd4afd868
104 Nbe31b663b5364df187a1e4f628a48ce8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name DNA-Binding Proteins
106 rdf:type schema:DefinedTerm
107 Nd38ca84b69b0483c94888aea6b34e149 schema:issueNumber 2
108 rdf:type schema:PublicationIssue
109 Nd5e17698433749cc8974dca927674699 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Transcription Factors
111 rdf:type schema:DefinedTerm
112 Nd6114c4639274c0abb47929be08e9ea2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Binding Sites
114 rdf:type schema:DefinedTerm
115 Nd7b2d314b34d40fb92179d8fa7854c47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Gene Expression Regulation, Fungal
117 rdf:type schema:DefinedTerm
118 Ndbfc013d50fa4dd097da020cbf2d24be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Regulatory Sequences, Nucleic Acid
120 rdf:type schema:DefinedTerm
121 Ndd944b21dbdb400fbcc2c81c2dca559d schema:name dimensions_id
122 schema:value pub.1017237252
123 rdf:type schema:PropertyValue
124 Nf21a5f95b36040deaeafefa96b856169 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Minichromosome Maintenance 1 Protein
126 rdf:type schema:DefinedTerm
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
131 schema:name Genetics
132 rdf:type schema:DefinedTerm
133 sg:grant.3003769 http://pending.schema.org/fundedItem sg:pub.10.1038/84792
134 rdf:type schema:MonetaryGrant
135 sg:journal.1103138 schema:issn 1061-4036
136 1546-1718
137 schema:name Nature Genetics
138 rdf:type schema:Periodical
139 sg:person.01043745150.99 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
140 schema:familyName Bussemaker
141 schema:givenName Harmen J.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043745150.99
143 rdf:type schema:Person
144 sg:person.01351724464.27 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
145 schema:familyName Siggia
146 schema:givenName Eric D.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724464.27
148 rdf:type schema:Person
149 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
150 https://doi.org/10.1038/10343
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/387067a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037338248
153 https://doi.org/10.1038/387067a0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/990025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003035083
156 https://doi.org/10.1038/990025
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nbt1098-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107556
159 https://doi.org/10.1038/nbt1098-939
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
162 https://doi.org/10.1038/nbt1296-1675
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/j.1460-2075.1989.tb08612.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079225976
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/pro.5560040820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035847613
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1006/jmbi.1998.1947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023454254
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0022-2836(87)90354-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003110840
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0092-8674(00)81641-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019018406
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0960-9822(07)00557-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002367576
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s1097-2765(00)80114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451892
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1101/gr.7.10.959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083159136
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.282.5389.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047652778
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.288.5463.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045941060
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.8211139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653653
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1128/mcb.10.5.2437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012109915
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/299432.299448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009567661
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.134907.8 schema:alternateName Rockefeller University
201 schema:name Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA.
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...