In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-02

AUTHORS

Jeremy S. Edwards, Rafael U. Ibarra, Bernhard O. Palsson

ABSTRACT

A significant goal in the post-genome era is to relate the annotated genome sequence to the physiological functions of a cell. Working from the annotated genome sequence, as well as biochemical and physiological information, it is possible to reconstruct complete metabolic networks. Furthermore, computational methods have been developed to interpret and predict the optimal performance of a metabolic network under a range of growth conditions. We have tested the hypothesis that Escherichia coli uses its metabolism to grow at a maximal rate using the E. coli MG1655 metabolic reconstruction. Based on this hypothesis, we formulated experiments that describe the quantitative relationship between a primary carbon source (acetate or succinate) uptake rate, oxygen uptake rate, and maximal cellular growth rate. We found that the experimental data were consistent with the stated hypothesis, namely that the E. coli metabolic network is optimized to maximize growth under the experimental conditions considered. This study thus demonstrates how the combination of in silico and experimental biology can be used to obtain a quantitative genotype-phenotype relationship for metabolism in bacterial cells. More... »

PAGES

125

Journal

TITLE

Nature Biotechnology

ISSUE

2

VOLUME

19

Related Patents

  • Microorganisms For The Production Of 1,4-Butanediol
  • Systems And Methods For Constructing Genomic-Based Phenotypic Models
  • Reverse Engineering Genome-Scale Metabolic Network Reconstructions For Organisms With Incomplete Genome Annotation And Developing Constraints Using Proton Flux States And Numerically-Determined Sub-Systems
  • Microorganisms And Methods For The Co-Production Of Isopropanol And 1,4-Butanediol
  • Microorganisms For Producing Butadiene And Methods Related Thereto
  • Human Metabolic Models And Methods
  • Method For The Evolutionary Design Of Biochemical Reaction Networks
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For Production Of 4-Hydroxybutyrate, 1,4-Butanediol And Related Compounds
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Flux Balance Analysis With Molecular Crowding
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Methods For Identifying Drug Targets Based On Genomic Sequence Data
  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms And Methods For The Biosynthesis Of Propylene
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Methods For Synthesis Of Olefins And Derivatives
  • Process Of Separating Components Of A Fermentation Broth
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Methods For The Synthesis Of Olefins And Derivatives
  • Microorganisms And Methods For Carbon-Efficient Biosynthesis Of Mek And 2-Butanol
  • Multicellular Metabolic Models And Methods
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms For The Production Of 2-Hydroxyisobutyric Acid
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Systems To Identify Operational Reaction Pathways
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Microorganisms For Producing Butadiene And Methods Related Thereto
  • Organisms For The Production Of 1,3-Butanediol
  • Method For Determining Gene Knockouts
  • Microorganisms For The Production Of Methacrylic Acid
  • Methods And Systems To Identify Operational Reaction Pathways
  • Flux Balance Analysis With Molecular Crowding
  • Microorganisms For The Production Of 1,4-Butanediol
  • Method For The Evolutionary Design Of Biochemical Reaction Networks
  • Systems And Methods For Constructing Genomic-Based Phenotypic Models
  • Methods And Systems To Identify Operational Reaction Pathways
  • Microbial Organisms Comprising Exogenous Nucleic Acids Encoding Reductive Tca Pathway Enzymes
  • Methods For The Synthesis Of Olefins And Derivatives
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Method For The Evolutionary Design Of Biochemical Reaction Networks
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods For Increasing Product Yields
  • Compositions And Methods For The Biosynthesis Of 1,4-Butanediol And Its Precursors
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Method For The Evolutionary Design Of Biochemical Reaction Networks
  • Primary Alcohol Producing Organisms
  • Primary Alcohol Producing Organisms
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods And Organisms For The Growth-Coupled Production Of 1,4-Butanediol
  • Organisms For The Production Of Isopropanol, N-Butanol, And Isobutanol
  • Method For Determining Gene Knockouts
  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/84379

    DOI

    http://dx.doi.org/10.1038/84379

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015458337

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11175725


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acetates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen Consumption", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Succinates", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Edwards", 
            "givenName": "Jeremy S.", 
            "id": "sg:person.013621313027.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621313027.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ibarra", 
            "givenName": "Rafael U.", 
            "id": "sg:person.01066771374.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066771374.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palsson", 
            "givenName": "Bernhard O.", 
            "id": "sg:person.011260472057.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260472057.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/nar/27.1.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001521131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003059937", 
              "https://doi.org/10.1038/43199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003059937", 
              "https://doi.org/10.1038/43199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0958-1669(93)90127-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003627669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.10.5528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005244921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007406550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0290(19971120)56:4<398::aid-bit6>3.0.co;2-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008226959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260280715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008765230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260280715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008765230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009841727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009841727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7799(99)01316-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010759109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0290(19990220)62:4<375::aid-bit1>3.0.co;2-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014243964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2380781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015947652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2380781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015947652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.274.25.17410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016660230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7799(97)01067-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019774568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bp990048k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020291595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1094-994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021388132", 
              "https://doi.org/10.1038/nbt1094-994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(98)01659-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022962026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.1993.1057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024270097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bp9900357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024459140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj3420567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024982241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj3420567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024982241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bp9701269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025187246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260260303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026431730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.1993.1203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027302274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029022565", 
              "https://doi.org/10.1038/13690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029022565", 
              "https://doi.org/10.1038/13690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-2607(92)90102-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029836415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-2607(92)90102-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029836415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/17.3.286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031768383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-0004(00)01754-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031798241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033935772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033935772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/15.9.749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036653677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.19.3821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038144095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.1999.0956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038370844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/15.1.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039270933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0290(19980720)59:2<227::aid-bit10>3.0.co;2-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041927985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.2000.1088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044018760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046020515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/26.1.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048540931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1296-441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051306917", 
              "https://doi.org/10.1038/ng1296-441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/0264-6021:3420567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056714202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/0264-6021:3420567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056714202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062558446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074542320", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079669191", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082777895", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-02", 
        "datePublishedReg": "2001-02-01", 
        "description": "A significant goal in the post-genome era is to relate the annotated genome sequence to the physiological functions of a cell. Working from the annotated genome sequence, as well as biochemical and physiological information, it is possible to reconstruct complete metabolic networks. Furthermore, computational methods have been developed to interpret and predict the optimal performance of a metabolic network under a range of growth conditions. We have tested the hypothesis that Escherichia coli uses its metabolism to grow at a maximal rate using the E. coli MG1655 metabolic reconstruction. Based on this hypothesis, we formulated experiments that describe the quantitative relationship between a primary carbon source (acetate or succinate) uptake rate, oxygen uptake rate, and maximal cellular growth rate. We found that the experimental data were consistent with the stated hypothesis, namely that the E. coli metabolic network is optimized to maximize growth under the experimental conditions considered. This study thus demonstrates how the combination of in silico and experimental biology can be used to obtain a quantitative genotype-phenotype relationship for metabolism in bacterial cells.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/84379", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3465017", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2515629", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3468893", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data", 
        "pagination": "125", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "49a7014bd4abf328d480dee83e7851dab9eac3676e35135dda97c609a4c7c5bf"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11175725"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/84379"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015458337"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/84379", 
          "https://app.dimensions.ai/details/publication/pub.1015458337"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt0201_125"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/84379'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/84379'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/84379'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/84379'


     

    This table displays all metadata directly associated to this object as RDF triples.

    249 TRIPLES      21 PREDICATES      79 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/84379 schema:about N0e08ab75da1d4972af11905f0e9d1447
    2 N458de4098e8341dbbcaa5b43dd53f454
    3 N484ec396d17745d989093acba0cbde21
    4 N81c36a77656b45db91e0938c266a52d4
    5 N9ffb89985b34454ea71074342c72a629
    6 Na8ca755cbb6348dba1eb0276d4c404a7
    7 Ne3598ff5a9074c0cae1e6835ead4c52a
    8 Neac3e57b25954e2eae8c915bb5b8856b
    9 Nf30e9b32c04949da9277ab7835aec82a
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N780c12425a674b0ebc148f528da648e0
    13 schema:citation sg:pub.10.1038/13690
    14 sg:pub.10.1038/43199
    15 sg:pub.10.1038/nbt1094-994
    16 sg:pub.10.1038/ng1296-441
    17 https://app.dimensions.ai/details/publication/pub.1074542320
    18 https://app.dimensions.ai/details/publication/pub.1079669191
    19 https://app.dimensions.ai/details/publication/pub.1082777895
    20 https://doi.org/10.1002/(sici)1097-0290(19971120)56:4<398::aid-bit6>3.0.co;2-j
    21 https://doi.org/10.1002/(sici)1097-0290(19980720)59:2<227::aid-bit10>3.0.co;2-b
    22 https://doi.org/10.1002/(sici)1097-0290(19990220)62:4<375::aid-bit1>3.0.co;2-o
    23 https://doi.org/10.1002/bit.260260303
    24 https://doi.org/10.1002/bit.260280715
    25 https://doi.org/10.1002/elps.1150180805
    26 https://doi.org/10.1002/elps.1150180807
    27 https://doi.org/10.1006/jtbi.1993.1057
    28 https://doi.org/10.1006/jtbi.1993.1203
    29 https://doi.org/10.1006/jtbi.1999.0956
    30 https://doi.org/10.1006/jtbi.2000.1088
    31 https://doi.org/10.1016/0169-2607(92)90102-d
    32 https://doi.org/10.1016/0958-1669(93)90127-i
    33 https://doi.org/10.1016/s0167-7799(97)01067-6
    34 https://doi.org/10.1016/s0167-7799(99)01316-5
    35 https://doi.org/10.1016/s0168-9525(98)01659-x
    36 https://doi.org/10.1016/s0968-0004(00)01754-0
    37 https://doi.org/10.1021/bp9701269
    38 https://doi.org/10.1021/bp9900357
    39 https://doi.org/10.1021/bp990048k
    40 https://doi.org/10.1042/0264-6021:3420567
    41 https://doi.org/10.1042/bj2380781
    42 https://doi.org/10.1042/bj3420567
    43 https://doi.org/10.1073/pnas.97.10.5528
    44 https://doi.org/10.1074/jbc.274.25.17410
    45 https://doi.org/10.1093/bioinformatics/15.1.72
    46 https://doi.org/10.1093/bioinformatics/15.9.749
    47 https://doi.org/10.1093/bioinformatics/17.3.286
    48 https://doi.org/10.1093/nar/26.1.43
    49 https://doi.org/10.1093/nar/27.1.29
    50 https://doi.org/10.1093/nar/27.19.3821
    51 https://doi.org/10.1093/nar/28.1.123
    52 https://doi.org/10.1093/nar/28.1.56
    53 https://doi.org/10.1126/science.278.5338.680
    54 schema:datePublished 2001-02
    55 schema:datePublishedReg 2001-02-01
    56 schema:description A significant goal in the post-genome era is to relate the annotated genome sequence to the physiological functions of a cell. Working from the annotated genome sequence, as well as biochemical and physiological information, it is possible to reconstruct complete metabolic networks. Furthermore, computational methods have been developed to interpret and predict the optimal performance of a metabolic network under a range of growth conditions. We have tested the hypothesis that Escherichia coli uses its metabolism to grow at a maximal rate using the E. coli MG1655 metabolic reconstruction. Based on this hypothesis, we formulated experiments that describe the quantitative relationship between a primary carbon source (acetate or succinate) uptake rate, oxygen uptake rate, and maximal cellular growth rate. We found that the experimental data were consistent with the stated hypothesis, namely that the E. coli metabolic network is optimized to maximize growth under the experimental conditions considered. This study thus demonstrates how the combination of in silico and experimental biology can be used to obtain a quantitative genotype-phenotype relationship for metabolism in bacterial cells.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf N1a71c02d4572433cb3e06982270012f9
    61 N6381b693750d40ec93b3ec95d80e2cb1
    62 sg:journal.1115214
    63 schema:name In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    64 schema:pagination 125
    65 schema:productId N089e81fa8a4246538835cb913b9e58d0
    66 N17bc1bd74dd74f72b408cb24b107ec7b
    67 N30b838c572bc4c0ead4c318361083e40
    68 N74e8c3674797451d8f0e1873c1ef12bd
    69 Nca7768a737cb4206a592348ac003e066
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458337
    71 https://doi.org/10.1038/84379
    72 schema:sdDatePublished 2019-04-11T12:24
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N1fb4c3ad28e549b790f002aeb13b3092
    75 schema:url https://www.nature.com/articles/nbt0201_125
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N089e81fa8a4246538835cb913b9e58d0 schema:name doi
    80 schema:value 10.1038/84379
    81 rdf:type schema:PropertyValue
    82 N0e08ab75da1d4972af11905f0e9d1447 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Models, Biological
    84 rdf:type schema:DefinedTerm
    85 N0e5b5270664b47e7b85667c13e5953de rdf:first sg:person.011260472057.92
    86 rdf:rest rdf:nil
    87 N17bc1bd74dd74f72b408cb24b107ec7b schema:name nlm_unique_id
    88 schema:value 9604648
    89 rdf:type schema:PropertyValue
    90 N1a71c02d4572433cb3e06982270012f9 schema:issueNumber 2
    91 rdf:type schema:PublicationIssue
    92 N1fb4c3ad28e549b790f002aeb13b3092 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N30b838c572bc4c0ead4c318361083e40 schema:name pubmed_id
    95 schema:value 11175725
    96 rdf:type schema:PropertyValue
    97 N458de4098e8341dbbcaa5b43dd53f454 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Acetates
    99 rdf:type schema:DefinedTerm
    100 N484ec396d17745d989093acba0cbde21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Computer Simulation
    102 rdf:type schema:DefinedTerm
    103 N6381b693750d40ec93b3ec95d80e2cb1 schema:volumeNumber 19
    104 rdf:type schema:PublicationVolume
    105 N74e8c3674797451d8f0e1873c1ef12bd schema:name dimensions_id
    106 schema:value pub.1015458337
    107 rdf:type schema:PropertyValue
    108 N780c12425a674b0ebc148f528da648e0 rdf:first sg:person.013621313027.86
    109 rdf:rest Nae8d3da7f5c743409cdc3df17585bc5a
    110 N81c36a77656b45db91e0938c266a52d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Succinates
    112 rdf:type schema:DefinedTerm
    113 N9ffb89985b34454ea71074342c72a629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Genome, Bacterial
    115 rdf:type schema:DefinedTerm
    116 Na8ca755cbb6348dba1eb0276d4c404a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Kinetics
    118 rdf:type schema:DefinedTerm
    119 Nae8d3da7f5c743409cdc3df17585bc5a rdf:first sg:person.01066771374.55
    120 rdf:rest N0e5b5270664b47e7b85667c13e5953de
    121 Nca7768a737cb4206a592348ac003e066 schema:name readcube_id
    122 schema:value 49a7014bd4abf328d480dee83e7851dab9eac3676e35135dda97c609a4c7c5bf
    123 rdf:type schema:PropertyValue
    124 Ne3598ff5a9074c0cae1e6835ead4c52a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Biological Transport
    126 rdf:type schema:DefinedTerm
    127 Neac3e57b25954e2eae8c915bb5b8856b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Oxygen Consumption
    129 rdf:type schema:DefinedTerm
    130 Nf30e9b32c04949da9277ab7835aec82a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Escherichia coli
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Biological Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Genetics
    138 rdf:type schema:DefinedTerm
    139 sg:grant.2515629 http://pending.schema.org/fundedItem sg:pub.10.1038/84379
    140 rdf:type schema:MonetaryGrant
    141 sg:grant.3465017 http://pending.schema.org/fundedItem sg:pub.10.1038/84379
    142 rdf:type schema:MonetaryGrant
    143 sg:grant.3468893 http://pending.schema.org/fundedItem sg:pub.10.1038/84379
    144 rdf:type schema:MonetaryGrant
    145 sg:journal.1115214 schema:issn 1087-0156
    146 1546-1696
    147 schema:name Nature Biotechnology
    148 rdf:type schema:Periodical
    149 sg:person.01066771374.55 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    150 schema:familyName Ibarra
    151 schema:givenName Rafael U.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066771374.55
    153 rdf:type schema:Person
    154 sg:person.011260472057.92 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    155 schema:familyName Palsson
    156 schema:givenName Bernhard O.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260472057.92
    158 rdf:type schema:Person
    159 sg:person.013621313027.86 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    160 schema:familyName Edwards
    161 schema:givenName Jeremy S.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621313027.86
    163 rdf:type schema:Person
    164 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    165 https://doi.org/10.1038/13690
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/43199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003059937
    168 https://doi.org/10.1038/43199
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nbt1094-994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021388132
    171 https://doi.org/10.1038/nbt1094-994
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/ng1296-441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051306917
    174 https://doi.org/10.1038/ng1296-441
    175 rdf:type schema:CreativeWork
    176 https://app.dimensions.ai/details/publication/pub.1074542320 schema:CreativeWork
    177 https://app.dimensions.ai/details/publication/pub.1079669191 schema:CreativeWork
    178 https://app.dimensions.ai/details/publication/pub.1082777895 schema:CreativeWork
    179 https://doi.org/10.1002/(sici)1097-0290(19971120)56:4<398::aid-bit6>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1008226959
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1002/(sici)1097-0290(19980720)59:2<227::aid-bit10>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1041927985
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1002/(sici)1097-0290(19990220)62:4<375::aid-bit1>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1014243964
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1002/bit.260260303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026431730
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1002/bit.260280715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008765230
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1002/elps.1150180805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033935772
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1002/elps.1150180807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009841727
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1006/jtbi.1993.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024270097
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1006/jtbi.1993.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302274
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1006/jtbi.1999.0956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038370844
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1006/jtbi.2000.1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044018760
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/0169-2607(92)90102-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1029836415
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/0958-1669(93)90127-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1003627669
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s0167-7799(97)01067-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019774568
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/s0167-7799(99)01316-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010759109
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/s0168-9525(98)01659-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962026
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/s0968-0004(00)01754-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798241
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1021/bp9701269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025187246
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1021/bp9900357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024459140
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1021/bp990048k schema:sameAs https://app.dimensions.ai/details/publication/pub.1020291595
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1042/0264-6021:3420567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056714202
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1042/bj2380781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015947652
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1042/bj3420567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024982241
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.97.10.5528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005244921
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1074/jbc.274.25.17410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016660230
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/bioinformatics/15.1.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039270933
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/bioinformatics/15.9.749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036653677
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/bioinformatics/17.3.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031768383
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1093/nar/26.1.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048540931
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1093/nar/27.1.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521131
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/nar/27.19.3821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038144095
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/nar/28.1.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007406550
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/nar/28.1.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046020515
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
    246 rdf:type schema:CreativeWork
    247 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
    248 schema:name Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412.
    249 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...