Automated protein model building combined with iterative structure refinement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-05

AUTHORS

Anastassis Perrakis, Richard Morris, Victor S. Lamzin

ABSTRACT

In protein crystallography, much time and effort are often required to trace an initial model from an interpretable electron density map and to refine it until it best agrees with the crystallographic data. Here, we present a method to build and refine a protein model automatically and without user intervention, starting from diffraction data extending to resolution higher than 2.3 Å and reasonable estimates of crystallographic phases. The method is based on an iterative procedure that describes the electron density map as a set of unconnected atoms and then searches for protein-like patterns. Automatic pattern recognition (model building) combined with refinement, allows a structural model to be obtained reliably within a few CPU hours. We demonstrate the power of the method with examples of a few recently solved structures. More... »

PAGES

458-463

References to SciGraph publications

  • 1998-08. MAD phasing grows up in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1998-08. Synchrotron radiation facilities in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1998-08. Structure of a cephalosporin synthase in NATURE
  • 1998-07. Three-dimensional structure of the Stat3β homodimer bound to DNA in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/8263

    DOI

    http://dx.doi.org/10.1038/8263

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037336361

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10331874


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptor Protein Complex alpha Subunits", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptor Proteins, Vesicular Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Automation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon-Nitrogen Lyases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chaperonin 60", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chitinases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallography, X-Ray", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ligases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mannosidases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metalloendopeptidases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "beta-Mannosidase", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory (EMBL), Grenoble Outstation, c/o ILL, BP 156, Av. des Martyrs, 38042, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.418923.5", 
              "name": [
                "European Molecular Biology Laboratory (EMBL), Grenoble Outstation, c/o ILL, BP 156, Av. des Martyrs, 38042, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perrakis", 
            "givenName": "Anastassis", 
            "id": "sg:person.0745114202.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745114202.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EMBL, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.475756.2", 
              "name": [
                "EMBL, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morris", 
            "givenName": "Richard", 
            "id": "sg:person.01141110743.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141110743.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EMBL, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.475756.2", 
              "name": [
                "EMBL, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lamzin", 
            "givenName": "Victor S.", 
            "id": "sg:person.01031753015.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031753015.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/1307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036252707", 
              "https://doi.org/10.1038/1307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018049595", 
              "https://doi.org/10.1038/28101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/29575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025655435", 
              "https://doi.org/10.1038/29575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016973678", 
              "https://doi.org/10.1038/1330"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-05", 
        "datePublishedReg": "1999-05-01", 
        "description": "In protein crystallography, much time and effort are often required to trace an initial model from an interpretable electron density map and to refine it until it best agrees with the crystallographic data. Here, we present a method to build and refine a protein model automatically and without user intervention, starting from diffraction data extending to resolution higher than 2.3 \u00c5 and reasonable estimates of crystallographic phases. The method is based on an iterative procedure that describes the electron density map as a set of unconnected atoms and then searches for protein-like patterns. Automatic pattern recognition (model building) combined with refinement, allows a structural model to be obtained reliably within a few CPU hours. We demonstrate the power of the method with examples of a few recently solved structures.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/8263", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295033", 
            "issn": [
              "1545-9993", 
              "2331-365X"
            ], 
            "name": "Nature Structural & Molecular Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "automatic pattern recognition", 
          "user intervention", 
          "pattern recognition", 
          "CPU hours", 
          "protein model building", 
          "model building", 
          "initial model", 
          "density maps", 
          "maps", 
          "iterative procedure", 
          "recognition", 
          "model", 
          "set", 
          "method", 
          "data", 
          "refinement", 
          "example", 
          "buildings", 
          "efforts", 
          "protein models", 
          "power", 
          "time", 
          "patterns", 
          "structural model", 
          "protein crystallography", 
          "structure", 
          "procedure", 
          "interpretable electron-density map", 
          "electron density maps", 
          "phase", 
          "estimates", 
          "reasonable estimates", 
          "hours", 
          "intervention", 
          "structure refinement", 
          "crystallographic data", 
          "crystallography", 
          "diffraction data", 
          "atoms", 
          "crystallographic phases", 
          "unconnected atoms", 
          "protein-like patterns", 
          "iterative structure refinement"
        ], 
        "name": "Automated protein model building combined with iterative structure refinement", 
        "pagination": "458-463", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037336361"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/8263"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10331874"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/8263", 
          "https://app.dimensions.ai/details/publication/pub.1037336361"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_346.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/8263"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/8263'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/8263'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/8263'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/8263'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      22 PREDICATES      95 URIs      82 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/8263 schema:about N0be61591c26649068891d81a258a8c87
    2 N0daea090c2c04cfda8f83ff6c3225223
    3 N25328d5f32d94b1982acc614febcb4e3
    4 N30cc0fb98b0e40a0b202c6dd3e4f1943
    5 N3b8b8341fe6b40e788bbc4319a368a78
    6 N41a994696334462ca5b5a859fa0e68e6
    7 N427e385cb5ec4bf78f366380b4c0ce4c
    8 N55d3fe80477c47868dca2496e8de7155
    9 N5c0b2c7bccfc4652afdf1b50c92721c3
    10 N80e0a51179ad4f4fa27c967f0504f77d
    11 N8d178948c3584709935d7b9898864b8f
    12 Naa2a4e40cb3b480096798ed51b89b8c5
    13 Nad5aa137466f40d98e31bd91e6b0fe94
    14 Nc10d858183774374bce651a7b5df60d7
    15 Nc436c30cb6434ddd8da508238ed2c9ba
    16 Nca1e4cce9fb544109467dc97f01e2975
    17 Nd4cb835af1c24411a0fbeb53ad9c7666
    18 Nd4d698d228914175ab9db42675c23e3a
    19 Ne9f4cb93926947e099a445a19d9bac91
    20 Nf4998525d1ec4431bc53888928dd967f
    21 anzsrc-for:03
    22 anzsrc-for:06
    23 anzsrc-for:11
    24 schema:author N2bdefb1be1fd4d5d80c89c55c0e1e2d9
    25 schema:citation sg:pub.10.1038/1307
    26 sg:pub.10.1038/1330
    27 sg:pub.10.1038/28101
    28 sg:pub.10.1038/29575
    29 schema:datePublished 1999-05
    30 schema:datePublishedReg 1999-05-01
    31 schema:description In protein crystallography, much time and effort are often required to trace an initial model from an interpretable electron density map and to refine it until it best agrees with the crystallographic data. Here, we present a method to build and refine a protein model automatically and without user intervention, starting from diffraction data extending to resolution higher than 2.3 Å and reasonable estimates of crystallographic phases. The method is based on an iterative procedure that describes the electron density map as a set of unconnected atoms and then searches for protein-like patterns. Automatic pattern recognition (model building) combined with refinement, allows a structural model to be obtained reliably within a few CPU hours. We demonstrate the power of the method with examples of a few recently solved structures.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf Nd8aa8026c8084be3bca4f8b078bc46f0
    36 Ndad740b72f024f83a96146bfd775abad
    37 sg:journal.1295033
    38 schema:keywords CPU hours
    39 atoms
    40 automatic pattern recognition
    41 buildings
    42 crystallographic data
    43 crystallographic phases
    44 crystallography
    45 data
    46 density maps
    47 diffraction data
    48 efforts
    49 electron density maps
    50 estimates
    51 example
    52 hours
    53 initial model
    54 interpretable electron-density map
    55 intervention
    56 iterative procedure
    57 iterative structure refinement
    58 maps
    59 method
    60 model
    61 model building
    62 pattern recognition
    63 patterns
    64 phase
    65 power
    66 procedure
    67 protein crystallography
    68 protein model building
    69 protein models
    70 protein-like patterns
    71 reasonable estimates
    72 recognition
    73 refinement
    74 set
    75 structural model
    76 structure
    77 structure refinement
    78 time
    79 unconnected atoms
    80 user intervention
    81 schema:name Automated protein model building combined with iterative structure refinement
    82 schema:pagination 458-463
    83 schema:productId N3c385fc500854cf09e25c32c6b01c0d0
    84 N96e1c23c868b42e9ba6e57c754268831
    85 Nbdc68b015bf8468785884a0ddd20ae15
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037336361
    87 https://doi.org/10.1038/8263
    88 schema:sdDatePublished 2021-12-01T19:13
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N30769f24d1444e01b3e6eca838e8b972
    91 schema:url https://doi.org/10.1038/8263
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N0be61591c26649068891d81a258a8c87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Crystallography, X-Ray
    97 rdf:type schema:DefinedTerm
    98 N0daea090c2c04cfda8f83ff6c3225223 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Pattern Recognition, Automated
    100 rdf:type schema:DefinedTerm
    101 N141c98bce9354951a91ca3def2636c32 rdf:first sg:person.01141110743.79
    102 rdf:rest N2f853c6c6678416d914786be4db84139
    103 N25328d5f32d94b1982acc614febcb4e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Animals
    105 rdf:type schema:DefinedTerm
    106 N2bdefb1be1fd4d5d80c89c55c0e1e2d9 rdf:first sg:person.0745114202.48
    107 rdf:rest N141c98bce9354951a91ca3def2636c32
    108 N2f853c6c6678416d914786be4db84139 rdf:first sg:person.01031753015.64
    109 rdf:rest rdf:nil
    110 N30769f24d1444e01b3e6eca838e8b972 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N30cc0fb98b0e40a0b202c6dd3e4f1943 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Models, Molecular
    114 rdf:type schema:DefinedTerm
    115 N3b8b8341fe6b40e788bbc4319a368a78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Metalloendopeptidases
    117 rdf:type schema:DefinedTerm
    118 N3c385fc500854cf09e25c32c6b01c0d0 schema:name doi
    119 schema:value 10.1038/8263
    120 rdf:type schema:PropertyValue
    121 N41a994696334462ca5b5a859fa0e68e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Adaptor Proteins, Vesicular Transport
    123 rdf:type schema:DefinedTerm
    124 N427e385cb5ec4bf78f366380b4c0ce4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Proteins
    126 rdf:type schema:DefinedTerm
    127 N55d3fe80477c47868dca2496e8de7155 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name beta-Mannosidase
    129 rdf:type schema:DefinedTerm
    130 N5c0b2c7bccfc4652afdf1b50c92721c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Electrons
    132 rdf:type schema:DefinedTerm
    133 N80e0a51179ad4f4fa27c967f0504f77d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Carbon-Nitrogen Lyases
    135 rdf:type schema:DefinedTerm
    136 N8d178948c3584709935d7b9898864b8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Chitinases
    138 rdf:type schema:DefinedTerm
    139 N96e1c23c868b42e9ba6e57c754268831 schema:name dimensions_id
    140 schema:value pub.1037336361
    141 rdf:type schema:PropertyValue
    142 Naa2a4e40cb3b480096798ed51b89b8c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Algorithms
    144 rdf:type schema:DefinedTerm
    145 Nad5aa137466f40d98e31bd91e6b0fe94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Mannosidases
    147 rdf:type schema:DefinedTerm
    148 Nbdc68b015bf8468785884a0ddd20ae15 schema:name pubmed_id
    149 schema:value 10331874
    150 rdf:type schema:PropertyValue
    151 Nc10d858183774374bce651a7b5df60d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Automation
    153 rdf:type schema:DefinedTerm
    154 Nc436c30cb6434ddd8da508238ed2c9ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Chaperonin 60
    156 rdf:type schema:DefinedTerm
    157 Nca1e4cce9fb544109467dc97f01e2975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Time Factors
    159 rdf:type schema:DefinedTerm
    160 Nd4cb835af1c24411a0fbeb53ad9c7666 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Membrane Proteins
    162 rdf:type schema:DefinedTerm
    163 Nd4d698d228914175ab9db42675c23e3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Adaptor Protein Complex alpha Subunits
    165 rdf:type schema:DefinedTerm
    166 Nd8aa8026c8084be3bca4f8b078bc46f0 schema:issueNumber 5
    167 rdf:type schema:PublicationIssue
    168 Ndad740b72f024f83a96146bfd775abad schema:volumeNumber 6
    169 rdf:type schema:PublicationVolume
    170 Ne9f4cb93926947e099a445a19d9bac91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Protein Conformation
    172 rdf:type schema:DefinedTerm
    173 Nf4998525d1ec4431bc53888928dd967f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Ligases
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Chemical Sciences
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Biological Sciences
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Medical and Health Sciences
    184 rdf:type schema:DefinedTerm
    185 sg:journal.1295033 schema:issn 1545-9993
    186 2331-365X
    187 schema:name Nature Structural & Molecular Biology
    188 schema:publisher Springer Nature
    189 rdf:type schema:Periodical
    190 sg:person.01031753015.64 schema:affiliation grid-institutes:grid.475756.2
    191 schema:familyName Lamzin
    192 schema:givenName Victor S.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031753015.64
    194 rdf:type schema:Person
    195 sg:person.01141110743.79 schema:affiliation grid-institutes:grid.475756.2
    196 schema:familyName Morris
    197 schema:givenName Richard
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141110743.79
    199 rdf:type schema:Person
    200 sg:person.0745114202.48 schema:affiliation grid-institutes:grid.418923.5
    201 schema:familyName Perrakis
    202 schema:givenName Anastassis
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745114202.48
    204 rdf:type schema:Person
    205 sg:pub.10.1038/1307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036252707
    206 https://doi.org/10.1038/1307
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016973678
    209 https://doi.org/10.1038/1330
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/28101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018049595
    212 https://doi.org/10.1038/28101
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/29575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025655435
    215 https://doi.org/10.1038/29575
    216 rdf:type schema:CreativeWork
    217 grid-institutes:grid.418923.5 schema:alternateName European Molecular Biology Laboratory (EMBL), Grenoble Outstation, c/o ILL, BP 156, Av. des Martyrs, 38042, Grenoble, France
    218 schema:name European Molecular Biology Laboratory (EMBL), Grenoble Outstation, c/o ILL, BP 156, Av. des Martyrs, 38042, Grenoble, France
    219 rdf:type schema:Organization
    220 grid-institutes:grid.475756.2 schema:alternateName EMBL, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
    221 schema:name EMBL, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...