Automated protein model building combined with iterative structure refinement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-05-01

AUTHORS

A Perrakis, R Morris, V S Lamzin

ABSTRACT

In protein crystallography, much time and effort are often required to trace an initial model from an interpretable electron density map and to refine it until it best agrees with the crystallographic data. Here, we present a method to build and refine a protein model automatically and without user intervention, starting from diffraction data extending to resolution higher than 2.3 A and reasonable estimates of crystallographic phases. The method is based on an iterative procedure that describes the electron density map as a set of unconnected atoms and then searches for protein-like patterns. Automatic pattern recognition (model building) combined with refinement, allows a structural model to be obtained reliably within a few CPU hours. We demonstrate the power of the method with examples of a few recently solved structures. More... »

PAGES

458-463

References to SciGraph publications

  • 1998-08. MAD phasing grows up in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1998-08. Synchrotron radiation facilities in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1998-08. Structure of a cephalosporin synthase in NATURE
  • 1998-07. Three-dimensional structure of the Stat3β homodimer bound to DNA in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/8263

    DOI

    http://dx.doi.org/10.1038/8263

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037336361

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10331874


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptor Protein Complex alpha Subunits", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptor Proteins, Vesicular Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Automation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon-Nitrogen Lyases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chaperonin 60", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chitinases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallography, X-Ray", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ligases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mannosidases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metalloendopeptidases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "beta-Mannosidase", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Molecular Biology Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.418923.5", 
              "name": [
                "European Molecular Biology Laboratory (EMBL), Grenoble Outstation, France. perrakis@embl-grenoble.fr"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perrakis", 
            "givenName": "A", 
            "id": "sg:person.0745114202.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745114202.48"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Morris", 
            "givenName": "R", 
            "id": "sg:person.01141110743.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141110743.79"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Lamzin", 
            "givenName": "V S", 
            "id": "sg:person.01031753015.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031753015.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1107/s0907444992007352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002248309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0108767393007597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002475686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444992010400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002528102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(98)00142-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004215540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0108767386099622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006433158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444997011980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008424316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444999000839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008525008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(97)77016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014182145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0108767390010224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014210169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0021889891004399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014885043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016973678", 
              "https://doi.org/10.1038/1330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444997012456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017910702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018049595", 
              "https://doi.org/10.1038/28101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018049595", 
              "https://doi.org/10.1038/28101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444998003254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019779527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0108768191010613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020093743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444996012255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020405374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444997005696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022493994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444994003112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025573949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/29575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025655435", 
              "https://doi.org/10.1038/29575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/29575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025655435", 
              "https://doi.org/10.1038/29575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0567739477001958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026220626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(97)77033-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028886170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(77)80200-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032593955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.16.9284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035950653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.16.9284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035950653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036252707", 
              "https://doi.org/10.1038/1307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(94)00119-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038213021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0021889894000191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041411305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444995016465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043289710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444997010330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046823034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560071004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047334314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444992008886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048521391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444996012279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049295470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(98)00104-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049551814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-440x(98)80151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052848056"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-05-01", 
        "datePublishedReg": "1999-05-01", 
        "description": "In protein crystallography, much time and effort are often required to trace an initial model from an interpretable electron density map and to refine it until it best agrees with the crystallographic data. Here, we present a method to build and refine a protein model automatically and without user intervention, starting from diffraction data extending to resolution higher than 2.3 A and reasonable estimates of crystallographic phases. The method is based on an iterative procedure that describes the electron density map as a set of unconnected atoms and then searches for protein-like patterns. Automatic pattern recognition (model building) combined with refinement, allows a structural model to be obtained reliably within a few CPU hours. We demonstrate the power of the method with examples of a few recently solved structures.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/8263", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295033", 
            "issn": [
              "1545-9993", 
              "2331-365X"
            ], 
            "name": "Nature Structural & Molecular Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Automated protein model building combined with iterative structure refinement", 
        "pagination": "458-463", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b1db249b03a240cb35f26f3a7dd5ed896ab5f4aacf074783454894a075436a2c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10331874"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9421566"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/8263"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037336361"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/8263", 
          "https://app.dimensions.ai/details/publication/pub.1037336361"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nsmb/journal/v6/n5/full/nsb0599_458.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/8263'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/8263'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/8263'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/8263'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      21 PREDICATES      81 URIs      40 LITERALS      29 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/8263 schema:about N13311a2b328a4439adf848fac5693902
    2 N151be4ba55154748a6d30f25ffa317f6
    3 N2bee05ecdc794a5784fc45da9cf9a0c1
    4 N39828f6da97045c0a1347dfb8bb2b983
    5 N45c62e748bd64b34a375911bfaf6cf0d
    6 N6a01d96f05144aad82e45ab45d6e908a
    7 N6ee5f1333fab413295c3f0ff75733f74
    8 N999ec7abc70c490db5240fcc741a80fd
    9 Nb0b4c53d220f4d6da496bfa294c923b1
    10 Nb0e3d5ec90a8426dba40ae3b9f12df3a
    11 Nb952eb3a26a4481188a766929bf14daa
    12 Nbf2ddac0109b423d998f6985e6a9f782
    13 Nca2e466b7cc84cc3b66359e12dad483e
    14 Ne5ebe487eb124a7db1a025f515929e7e
    15 Ne7bed90b70864ecf9f290fe44b749df1
    16 Ne9a17fb027a244b98b93ec699529e9ff
    17 Neb022ff962694035b51ac52b238b0fda
    18 Nf1a2e04543954a4ab73c4abb902369e5
    19 Nf2d0742ca8af41129159b87a3041f3ee
    20 Nfc6f9b7025ef49b098b35988c0619eca
    21 anzsrc-for:08
    22 anzsrc-for:0801
    23 schema:author N27d20d32e6f64a7eb0ae07972f36b78a
    24 schema:citation sg:pub.10.1038/1307
    25 sg:pub.10.1038/1330
    26 sg:pub.10.1038/28101
    27 sg:pub.10.1038/29575
    28 https://doi.org/10.1002/pro.5560071004
    29 https://doi.org/10.1016/s0022-2836(77)80200-3
    30 https://doi.org/10.1016/s0076-6879(97)77016-2
    31 https://doi.org/10.1016/s0076-6879(97)77033-2
    32 https://doi.org/10.1016/s0959-440x(98)80151-6
    33 https://doi.org/10.1016/s0969-2126(94)00119-7
    34 https://doi.org/10.1016/s0969-2126(98)00104-x
    35 https://doi.org/10.1016/s0969-2126(98)00142-7
    36 https://doi.org/10.1073/pnas.95.16.9284
    37 https://doi.org/10.1107/s0021889891004399
    38 https://doi.org/10.1107/s0021889894000191
    39 https://doi.org/10.1107/s0108767386099622
    40 https://doi.org/10.1107/s0108767390010224
    41 https://doi.org/10.1107/s0108767393007597
    42 https://doi.org/10.1107/s0108768191010613
    43 https://doi.org/10.1107/s0567739477001958
    44 https://doi.org/10.1107/s0907444992007352
    45 https://doi.org/10.1107/s0907444992008886
    46 https://doi.org/10.1107/s0907444992010400
    47 https://doi.org/10.1107/s0907444994003112
    48 https://doi.org/10.1107/s0907444995016465
    49 https://doi.org/10.1107/s0907444996012255
    50 https://doi.org/10.1107/s0907444996012279
    51 https://doi.org/10.1107/s0907444997005696
    52 https://doi.org/10.1107/s0907444997010330
    53 https://doi.org/10.1107/s0907444997011980
    54 https://doi.org/10.1107/s0907444997012456
    55 https://doi.org/10.1107/s0907444998003254
    56 https://doi.org/10.1107/s0907444999000839
    57 schema:datePublished 1999-05-01
    58 schema:datePublishedReg 1999-05-01
    59 schema:description In protein crystallography, much time and effort are often required to trace an initial model from an interpretable electron density map and to refine it until it best agrees with the crystallographic data. Here, we present a method to build and refine a protein model automatically and without user intervention, starting from diffraction data extending to resolution higher than 2.3 A and reasonable estimates of crystallographic phases. The method is based on an iterative procedure that describes the electron density map as a set of unconnected atoms and then searches for protein-like patterns. Automatic pattern recognition (model building) combined with refinement, allows a structural model to be obtained reliably within a few CPU hours. We demonstrate the power of the method with examples of a few recently solved structures.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree false
    63 schema:isPartOf N1ddc31fcd82745b3bac065c26e5ad574
    64 N2b0703a43ae6414bb12c0cc782ab80d3
    65 sg:journal.1295033
    66 schema:name Automated protein model building combined with iterative structure refinement
    67 schema:pagination 458-463
    68 schema:productId N232570ddea5b457aa0767c3cd1dd3263
    69 N3bdfc10d5c30401ca2da740c8b58b947
    70 N4932f381bc3b48c899890dd35fa04d8d
    71 N76a332e6d84748129d045f6637f0a6d2
    72 Nda174c6e29b5432fb5f7790a2ac48c1b
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037336361
    74 https://doi.org/10.1038/8263
    75 schema:sdDatePublished 2019-04-10T23:12
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Nca1d4998e157466c90b35e7ea1b7f788
    78 schema:url http://www.nature.com/nsmb/journal/v6/n5/full/nsb0599_458.html
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N13311a2b328a4439adf848fac5693902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Electrons
    84 rdf:type schema:DefinedTerm
    85 N151be4ba55154748a6d30f25ffa317f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Carbon-Nitrogen Lyases
    87 rdf:type schema:DefinedTerm
    88 N1ddc31fcd82745b3bac065c26e5ad574 schema:issueNumber 5
    89 rdf:type schema:PublicationIssue
    90 N232570ddea5b457aa0767c3cd1dd3263 schema:name nlm_unique_id
    91 schema:value 9421566
    92 rdf:type schema:PropertyValue
    93 N27d20d32e6f64a7eb0ae07972f36b78a rdf:first sg:person.0745114202.48
    94 rdf:rest Naacef09929724324ad9962aefa266197
    95 N2b0703a43ae6414bb12c0cc782ab80d3 schema:volumeNumber 6
    96 rdf:type schema:PublicationVolume
    97 N2bee05ecdc794a5784fc45da9cf9a0c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Ligases
    99 rdf:type schema:DefinedTerm
    100 N39828f6da97045c0a1347dfb8bb2b983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Automation
    102 rdf:type schema:DefinedTerm
    103 N3bdfc10d5c30401ca2da740c8b58b947 schema:name readcube_id
    104 schema:value b1db249b03a240cb35f26f3a7dd5ed896ab5f4aacf074783454894a075436a2c
    105 rdf:type schema:PropertyValue
    106 N45c62e748bd64b34a375911bfaf6cf0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Mannosidases
    108 rdf:type schema:DefinedTerm
    109 N4932f381bc3b48c899890dd35fa04d8d schema:name doi
    110 schema:value 10.1038/8263
    111 rdf:type schema:PropertyValue
    112 N6a01d96f05144aad82e45ab45d6e908a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Membrane Proteins
    114 rdf:type schema:DefinedTerm
    115 N6ee5f1333fab413295c3f0ff75733f74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Time Factors
    117 rdf:type schema:DefinedTerm
    118 N76a332e6d84748129d045f6637f0a6d2 schema:name pubmed_id
    119 schema:value 10331874
    120 rdf:type schema:PropertyValue
    121 N999ec7abc70c490db5240fcc741a80fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Adaptor Protein Complex alpha Subunits
    123 rdf:type schema:DefinedTerm
    124 Naa5952c3faf64eb987a21c8aa0ff87c1 rdf:first sg:person.01031753015.64
    125 rdf:rest rdf:nil
    126 Naacef09929724324ad9962aefa266197 rdf:first sg:person.01141110743.79
    127 rdf:rest Naa5952c3faf64eb987a21c8aa0ff87c1
    128 Nb0b4c53d220f4d6da496bfa294c923b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Protein Conformation
    130 rdf:type schema:DefinedTerm
    131 Nb0e3d5ec90a8426dba40ae3b9f12df3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Chaperonin 60
    133 rdf:type schema:DefinedTerm
    134 Nb952eb3a26a4481188a766929bf14daa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Crystallography, X-Ray
    136 rdf:type schema:DefinedTerm
    137 Nbf2ddac0109b423d998f6985e6a9f782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Models, Molecular
    139 rdf:type schema:DefinedTerm
    140 Nca1d4998e157466c90b35e7ea1b7f788 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 Nca2e466b7cc84cc3b66359e12dad483e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Chitinases
    144 rdf:type schema:DefinedTerm
    145 Nda174c6e29b5432fb5f7790a2ac48c1b schema:name dimensions_id
    146 schema:value pub.1037336361
    147 rdf:type schema:PropertyValue
    148 Ne5ebe487eb124a7db1a025f515929e7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Proteins
    150 rdf:type schema:DefinedTerm
    151 Ne7bed90b70864ecf9f290fe44b749df1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Metalloendopeptidases
    153 rdf:type schema:DefinedTerm
    154 Ne9a17fb027a244b98b93ec699529e9ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name beta-Mannosidase
    156 rdf:type schema:DefinedTerm
    157 Neb022ff962694035b51ac52b238b0fda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Animals
    159 rdf:type schema:DefinedTerm
    160 Nf1a2e04543954a4ab73c4abb902369e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Adaptor Proteins, Vesicular Transport
    162 rdf:type schema:DefinedTerm
    163 Nf2d0742ca8af41129159b87a3041f3ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Pattern Recognition, Automated
    165 rdf:type schema:DefinedTerm
    166 Nfc6f9b7025ef49b098b35988c0619eca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Algorithms
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Information and Computing Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Artificial Intelligence and Image Processing
    174 rdf:type schema:DefinedTerm
    175 sg:journal.1295033 schema:issn 1545-9993
    176 2331-365X
    177 schema:name Nature Structural & Molecular Biology
    178 rdf:type schema:Periodical
    179 sg:person.01031753015.64 schema:familyName Lamzin
    180 schema:givenName V S
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031753015.64
    182 rdf:type schema:Person
    183 sg:person.01141110743.79 schema:familyName Morris
    184 schema:givenName R
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141110743.79
    186 rdf:type schema:Person
    187 sg:person.0745114202.48 schema:affiliation https://www.grid.ac/institutes/grid.418923.5
    188 schema:familyName Perrakis
    189 schema:givenName A
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745114202.48
    191 rdf:type schema:Person
    192 sg:pub.10.1038/1307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036252707
    193 https://doi.org/10.1038/1307
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016973678
    196 https://doi.org/10.1038/1330
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/28101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018049595
    199 https://doi.org/10.1038/28101
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/29575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025655435
    202 https://doi.org/10.1038/29575
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1002/pro.5560071004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047334314
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/s0022-2836(77)80200-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032593955
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/s0076-6879(97)77016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014182145
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/s0076-6879(97)77033-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028886170
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/s0959-440x(98)80151-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052848056
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/s0969-2126(94)00119-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038213021
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s0969-2126(98)00104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049551814
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0969-2126(98)00142-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004215540
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1073/pnas.95.16.9284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035950653
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1107/s0021889891004399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014885043
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1107/s0021889894000191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041411305
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1107/s0108767386099622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433158
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1107/s0108767390010224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014210169
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1107/s0108767393007597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002475686
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1107/s0108768191010613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020093743
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1107/s0567739477001958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026220626
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1107/s0907444992007352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002248309
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1107/s0907444992008886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048521391
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1107/s0907444992010400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002528102
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1107/s0907444994003112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025573949
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1107/s0907444995016465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043289710
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1107/s0907444996012255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020405374
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1107/s0907444996012279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049295470
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1107/s0907444997005696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022493994
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1107/s0907444997010330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046823034
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1107/s0907444997011980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008424316
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1107/s0907444997012456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017910702
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1107/s0907444998003254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019779527
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1107/s0907444999000839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008525008
    261 rdf:type schema:CreativeWork
    262 https://www.grid.ac/institutes/grid.418923.5 schema:alternateName European Molecular Biology Laboratory
    263 schema:name European Molecular Biology Laboratory (EMBL), Grenoble Outstation, France. perrakis@embl-grenoble.fr
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...