A network of protein–protein interactions in yeast View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-12

AUTHORS

Benno Schwikowski, Peter Uetz, Stanley Fields

ABSTRACT

A global analysis of 2,709 published interactions between proteins of the yeast Saccharomyces cerevisiae has been performed, enabling the establishment of a single large network of 2,358 interactions among 1,548 proteins. Proteins of known function and cellular location tend to cluster together, with 63% of the interactions occurring between proteins with a common functional assignment and 76% occurring between proteins found in the same subcellular compartment. Possible functions can be assigned to a protein based on the known functions of its interacting partners. This approach correctly predicts a functional category for 72% of the 1,393 characterized proteins with at least one partner of known function, and has been applied to predict functions for 364 previously uncharacterized proteins. More... »

PAGES

1257-1261

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/82360

DOI

http://dx.doi.org/10.1038/82360

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028970743

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11101803


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Two-Hybrid System Techniques", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, University of Washington, Box 352350, 98195, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "The Institute for Systems Biology, 4225 Roosevelt Way NE, Suite 200, 98105, Seattle, WA", 
            "Department of Computer Science and Engineering, University of Washington, Box 352350, 98195, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwikowski", 
        "givenName": "Benno", 
        "id": "sg:person.01301024710.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301024710.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Medicine, University of Washington, Box 357360, 98195, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genetics and Medicine, University of Washington, Box 357360, 98195, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uetz", 
        "givenName": "Peter", 
        "id": "sg:person.0610500114.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610500114.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Howard Hughes Medical Institute, University of Washington, Box 357360, 98195, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genetics and Medicine, University of Washington, Box 357360, 98195, Seattle, WA", 
            "Howard Hughes Medical Institute, University of Washington, Box 357360, 98195, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fields", 
        "givenName": "Stanley", 
        "id": "sg:person.014624417057.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624417057.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/1700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050797047", 
          "https://doi.org/10.1038/1700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/47048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029164285", 
          "https://doi.org/10.1038/47048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048366482", 
          "https://doi.org/10.1038/46558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0196-72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007329656", 
          "https://doi.org/10.1038/ng0196-72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0797-277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007071524", 
          "https://doi.org/10.1038/ng0797-277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/47056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029720868", 
          "https://doi.org/10.1038/47056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773549", 
          "https://doi.org/10.1038/35001009"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-12", 
    "datePublishedReg": "2000-12-01", 
    "description": "A global analysis of 2,709 published interactions between proteins of the yeast Saccharomyces cerevisiae has been performed, enabling the establishment of a single large network of 2,358 interactions among 1,548 proteins. Proteins of known function and cellular location tend to cluster together, with 63% of the interactions occurring between proteins with a common functional assignment and 76% occurring between proteins found in the same subcellular compartment. Possible functions can be assigned to a protein based on the known functions of its interacting partners. This approach correctly predicts a functional category for 72% of the 1,393 characterized proteins with at least one partner of known function, and has been applied to predict functions for 364 previously uncharacterized proteins.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/82360", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439911", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "yeast Saccharomyces cerevisiae", 
      "protein-protein interactions", 
      "same subcellular compartment", 
      "uncharacterized proteins", 
      "functional assignment", 
      "subcellular compartments", 
      "Saccharomyces cerevisiae", 
      "functional categories", 
      "cellular location", 
      "possible functions", 
      "protein", 
      "global analysis", 
      "single large network", 
      "cerevisiae", 
      "yeast", 
      "interaction", 
      "function", 
      "compartments", 
      "partners", 
      "establishment", 
      "analysis", 
      "location", 
      "network", 
      "large networks", 
      "assignment", 
      "approach", 
      "categories"
    ], 
    "name": "A network of protein\u2013protein interactions in yeast", 
    "pagination": "1257-1261", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028970743"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/82360"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11101803"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/82360", 
      "https://app.dimensions.ai/details/publication/pub.1028970743"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_343.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/82360"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/82360'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/82360'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/82360'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/82360'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      68 URIs      53 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/82360 schema:about N0688d0d0573745d4ad56ea616aa9d2a5
2 N21d82486531b4f22b120c9920dcc77e4
3 N25409183f3d348f68c8e83214478b986
4 N6cd53eb794fd49439451399358fbb3da
5 N76c7f2e9ad5a4e2697fe1f5b39d0114f
6 N84e83189f26f4bcb9f553abb1acfca92
7 Nba685abe4b6e4b49bb5a8c0fbc30d46c
8 Ne3af6f8512f74747b8eafc60429139e5
9 anzsrc-for:06
10 anzsrc-for:0601
11 schema:author Nb7a8dd5225c44fd2bc253ff9e35cdfcf
12 schema:citation sg:pub.10.1038/1700
13 sg:pub.10.1038/35001009
14 sg:pub.10.1038/46558
15 sg:pub.10.1038/47048
16 sg:pub.10.1038/47056
17 sg:pub.10.1038/ng0196-72
18 sg:pub.10.1038/ng0797-277
19 schema:datePublished 2000-12
20 schema:datePublishedReg 2000-12-01
21 schema:description A global analysis of 2,709 published interactions between proteins of the yeast Saccharomyces cerevisiae has been performed, enabling the establishment of a single large network of 2,358 interactions among 1,548 proteins. Proteins of known function and cellular location tend to cluster together, with 63% of the interactions occurring between proteins with a common functional assignment and 76% occurring between proteins found in the same subcellular compartment. Possible functions can be assigned to a protein based on the known functions of its interacting partners. This approach correctly predicts a functional category for 72% of the 1,393 characterized proteins with at least one partner of known function, and has been applied to predict functions for 364 previously uncharacterized proteins.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N324eae4c30e847aeb4068bac522f44eb
25 Nf674af82737e4e9f88058593c5410db5
26 sg:journal.1115214
27 schema:keywords Saccharomyces cerevisiae
28 analysis
29 approach
30 assignment
31 categories
32 cellular location
33 cerevisiae
34 compartments
35 establishment
36 function
37 functional assignment
38 functional categories
39 global analysis
40 interaction
41 large networks
42 location
43 network
44 partners
45 possible functions
46 protein
47 protein-protein interactions
48 same subcellular compartment
49 single large network
50 subcellular compartments
51 uncharacterized proteins
52 yeast
53 yeast Saccharomyces cerevisiae
54 schema:name A network of protein–protein interactions in yeast
55 schema:pagination 1257-1261
56 schema:productId N0e711fa7fcf74921b2691b003ab83387
57 Nc0a5d1f6b10b4d72a5053586ca8492ce
58 Nea015637835d4c81ac3b9e4eff55e10f
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028970743
60 https://doi.org/10.1038/82360
61 schema:sdDatePublished 2022-11-24T20:50
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Na1ff8abfc9f44e03852677015f1d4b56
64 schema:url https://doi.org/10.1038/82360
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0688d0d0573745d4ad56ea616aa9d2a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Proteome
70 rdf:type schema:DefinedTerm
71 N0e711fa7fcf74921b2691b003ab83387 schema:name dimensions_id
72 schema:value pub.1028970743
73 rdf:type schema:PropertyValue
74 N21d82486531b4f22b120c9920dcc77e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Saccharomyces cerevisiae
76 rdf:type schema:DefinedTerm
77 N25409183f3d348f68c8e83214478b986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Genomics
79 rdf:type schema:DefinedTerm
80 N324eae4c30e847aeb4068bac522f44eb schema:issueNumber 12
81 rdf:type schema:PublicationIssue
82 N42a8af5981874c7887dc2695511d6507 rdf:first sg:person.0610500114.14
83 rdf:rest Nce4cd7f52c7543bd8ce8d897c70e4baf
84 N6cd53eb794fd49439451399358fbb3da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Fungal Proteins
86 rdf:type schema:DefinedTerm
87 N76c7f2e9ad5a4e2697fe1f5b39d0114f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Protein Binding
89 rdf:type schema:DefinedTerm
90 N84e83189f26f4bcb9f553abb1acfca92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Computational Biology
92 rdf:type schema:DefinedTerm
93 Na1ff8abfc9f44e03852677015f1d4b56 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nb7a8dd5225c44fd2bc253ff9e35cdfcf rdf:first sg:person.01301024710.99
96 rdf:rest N42a8af5981874c7887dc2695511d6507
97 Nba685abe4b6e4b49bb5a8c0fbc30d46c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Two-Hybrid System Techniques
99 rdf:type schema:DefinedTerm
100 Nc0a5d1f6b10b4d72a5053586ca8492ce schema:name pubmed_id
101 schema:value 11101803
102 rdf:type schema:PropertyValue
103 Nce4cd7f52c7543bd8ce8d897c70e4baf rdf:first sg:person.014624417057.73
104 rdf:rest rdf:nil
105 Ne3af6f8512f74747b8eafc60429139e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Algorithms
107 rdf:type schema:DefinedTerm
108 Nea015637835d4c81ac3b9e4eff55e10f schema:name doi
109 schema:value 10.1038/82360
110 rdf:type schema:PropertyValue
111 Nf674af82737e4e9f88058593c5410db5 schema:volumeNumber 18
112 rdf:type schema:PublicationVolume
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biochemistry and Cell Biology
118 rdf:type schema:DefinedTerm
119 sg:grant.2439911 http://pending.schema.org/fundedItem sg:pub.10.1038/82360
120 rdf:type schema:MonetaryGrant
121 sg:journal.1115214 schema:issn 1087-0156
122 1546-1696
123 schema:name Nature Biotechnology
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01301024710.99 schema:affiliation grid-institutes:grid.34477.33
127 schema:familyName Schwikowski
128 schema:givenName Benno
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301024710.99
130 rdf:type schema:Person
131 sg:person.014624417057.73 schema:affiliation grid-institutes:grid.34477.33
132 schema:familyName Fields
133 schema:givenName Stanley
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624417057.73
135 rdf:type schema:Person
136 sg:person.0610500114.14 schema:affiliation grid-institutes:grid.34477.33
137 schema:familyName Uetz
138 schema:givenName Peter
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610500114.14
140 rdf:type schema:Person
141 sg:pub.10.1038/1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050797047
142 https://doi.org/10.1038/1700
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
145 https://doi.org/10.1038/35001009
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/46558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048366482
148 https://doi.org/10.1038/46558
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/47048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029164285
151 https://doi.org/10.1038/47048
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/47056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029720868
154 https://doi.org/10.1038/47056
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/ng0196-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007329656
157 https://doi.org/10.1038/ng0196-72
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ng0797-277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007071524
160 https://doi.org/10.1038/ng0797-277
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.34477.33 schema:alternateName Department of Computer Science and Engineering, University of Washington, Box 352350, 98195, Seattle, WA
163 Department of Genetics and Medicine, University of Washington, Box 357360, 98195, Seattle, WA
164 Howard Hughes Medical Institute, University of Washington, Box 357360, 98195, Seattle, WA
165 schema:name Department of Computer Science and Engineering, University of Washington, Box 352350, 98195, Seattle, WA
166 Department of Genetics and Medicine, University of Washington, Box 357360, 98195, Seattle, WA
167 Howard Hughes Medical Institute, University of Washington, Box 357360, 98195, Seattle, WA
168 The Institute for Systems Biology, 4225 Roosevelt Way NE, Suite 200, 98105, Seattle, WA
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...