Synaptic plasticity: taming the beast View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

L. F. Abbott, Sacha B. Nelson

ABSTRACT

Synaptic plasticity provides the basis for most models of learning, memory and development in neural circuits. To generate realistic results, synapse-specific Hebbian forms of plasticity, such as long-term potentiation and depression, must be augmented by global processes that regulate overall levels of neuronal and network activity. Regulatory processes are often as important as the more intensively studied Hebbian processes in determining the consequences of synaptic plasticity for network function. Recent experimental results suggest several novel mechanisms for regulating levels of activity in conjunction with Hebbian synaptic modification. We review three of them—synaptic scaling, spike-timing dependent plasticity and synaptic redistribution—and discuss their functional implications. More... »

PAGES

1178-1183

Journal

TITLE

Nature Neuroscience

ISSUE

Suppl 11

VOLUME

3

Related Patents

  • Hierarchical Robotic Controller Apparatus And Methods
  • Apparatus And Methods For Removal Of Learned Behaviors In Robots
  • Robotic Training Apparatus And Methods
  • Apparatus And Method For Partial Evaluation Of Synaptic Updates Based On System Events
  • High Level Neuromorphic Network Description Apparatus And Methods
  • Apparatus And Methods For Online Training Of Robots
  • Apparatus And Methods For Training Path Navigation By Robots
  • Predictive Robotic Controller Apparatus And Methods
  • Apparatus And Methods For Control Of Robot Actions Based On Corrective User Inputs
  • Trainable Convolutional Network Apparatus And Methods For Operating A Robotic Vehicle
  • Apparatus And Methods For Event-Triggered Updates In Parallel Networks
  • Multiple (Multi-) Level Cell (Mlc) Non-Volatile (Nv) Memory (Nvm) Matrix Circuits For Performing Matrix Computations With Multi-Bit Input Vectors
  • Robotic Control Arbitration Apparatus And Methods
  • Learning Apparatus And Methods For Control Of Robotic Devices Via Spoofing
  • Predictive Robotic Controller Apparatus And Methods
  • Adaptive Predictor Apparatus And Methods
  • Discrepancy Detection Apparatus And Methods For Machine Learning
  • Spoofing Remote Control Apparatus And Methods
  • Persistent Predictor Apparatus And Methods For Task Switching
  • Adaptive Robotic Interface Apparatus And Methods
  • Adaptive Predictor Apparatus And Methods
  • Apparatus And Methods For Control Of Robot Actions Based On Corrective User Inputs
  • Apparatus And Methods For Haptic Training Of Robots
  • Method For Determining Cancer Invasiveness And Patient Prognosis
  • Home Animation Apparatus And Methods
  • Apparatus And Method For Partial Evaluation Of Synaptic Updates Based On System Events
  • Apparatus And Methods For Synaptic Update In A Pulse-Coded Network
  • Encoding And Decoding Information
  • Methods For Memory Management In Parallel Networks
  • Apparatus And Methods For Haptic Training Of Robots
  • Non-Volative (Nv) Memory (Nvm) Matrix Circuits Employing Nvm Matrix Circuits For Performing Matrix Computations
  • Apparatus And Methods For Operating Robotic Devices Using Selective State Space Training
  • Encoding And Decoding Information
  • Apparatus And Methods For Training Of Robots
  • Adaptive Robotic Interface Apparatus And Methods
  • Elementary Network Description For Neuromorphic Systems With Plurality Of Doublets Wherein Doublet Events Rules Are Executed In Parallel
  • Apparatus And Methods For Remotely Controlling Robotic Devices
  • Apparatus And Methods For Training Of Robotic Control Arbitration
  • Systems And Methods To Operate Controllable Devices With Gestures And/Or Noises
  • Apparatus And Methods For Programming And Training Of Robotic Devices
  • Round-Trip Engineering Apparatus And Methods For Neural Networks
  • Increased Dynamic Range Artificial Neuron Network Apparatus And Methods
  • Apparatus And Methods For Programming And Training Of Robotic Household Appliances
  • Apparatus And Methods For Training Path Navigation By Robots
  • Apparatus And Methods For Control Of Robot Actions Based On Corrective User Inputs
  • Apparatus And Methods For Context Determination Using Real Time Sensor Data
  • Encoding And Decoding Information
  • Feature Detection Apparatus And Methods For Training Of Robotic Navigation
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/81453

    DOI

    http://dx.doi.org/10.1038/81453

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001869026

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11127835


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Action Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Long-Term Potentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Net", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuronal Plasticity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Glutamate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synaptic Transmission", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biology and Volen Center, Brandeis University, 02454-9110, Waltham, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.253264.4", 
              "name": [
                "Department of Biology and Volen Center, Brandeis University, 02454-9110, Waltham, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abbott", 
            "givenName": "L. F.", 
            "id": "sg:person.01015001074.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015001074.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology and Volen Center, Brandeis University, 02454-9110, Waltham, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.253264.4", 
              "name": [
                "Department of Biology and Volen Center, Brandeis University, 02454-9110, Waltham, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nelson", 
            "givenName": "Sacha B.", 
            "id": "sg:person.01114173452.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114173452.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008910918445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034460973", 
              "https://doi.org/10.1023/a:1008910918445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/78829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009745377", 
              "https://doi.org/10.1038/78829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/22553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051759067", 
              "https://doi.org/10.1038/22553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/25665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033198781", 
              "https://doi.org/10.1038/25665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/387278a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052937892", 
              "https://doi.org/10.1038/387278a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/16026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050852262", 
              "https://doi.org/10.1038/16026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00275687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041038550", 
              "https://doi.org/10.1007/bf00275687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/36103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033478989", 
              "https://doi.org/10.1038/36103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382807a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011717289", 
              "https://doi.org/10.1038/382807a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/383076a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013183215", 
              "https://doi.org/10.1038/383076a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-11", 
        "datePublishedReg": "2000-11-01", 
        "description": "Synaptic plasticity provides the basis for most models of learning, memory and development in neural circuits. To generate realistic results, synapse-specific Hebbian forms of plasticity, such as long-term potentiation and depression, must be augmented by global processes that regulate overall levels of neuronal and network activity. Regulatory processes are often as important as the more intensively studied Hebbian processes in determining the consequences of synaptic plasticity for network function. Recent experimental results suggest several novel mechanisms for regulating levels of activity in conjunction with Hebbian synaptic modification. We review three of them\u2014synaptic scaling, spike-timing dependent plasticity and synaptic redistribution\u2014and discuss their functional implications.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/81453", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2548905", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2506307", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1118362", 
            "issn": [
              "1097-6256", 
              "1546-1726"
            ], 
            "name": "Nature Neuroscience", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "synaptic plasticity", 
          "long-term potentiation", 
          "synaptic redistribution", 
          "Hebbian forms", 
          "synaptic scaling", 
          "neural circuits", 
          "synaptic modification", 
          "level of activity", 
          "Hebbian processes", 
          "Hebbian synaptic modification", 
          "spike-timing dependent plasticity", 
          "network activity", 
          "novel mechanism", 
          "functional implications", 
          "plasticity", 
          "potentiation", 
          "overall level", 
          "regulatory processes", 
          "depression", 
          "levels", 
          "dependent plasticity", 
          "activity", 
          "results", 
          "mechanism", 
          "function", 
          "consequences", 
          "development", 
          "conjunction", 
          "implications", 
          "network functions", 
          "memory", 
          "modification", 
          "process", 
          "most models", 
          "basis", 
          "form", 
          "beast", 
          "redistribution", 
          "model", 
          "global processes", 
          "circuit", 
          "learning", 
          "recent experimental results", 
          "scaling", 
          "realistic results", 
          "experimental results"
        ], 
        "name": "Synaptic plasticity: taming the beast", 
        "pagination": "1178-1183", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001869026"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/81453"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11127835"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/81453", 
          "https://app.dimensions.ai/details/publication/pub.1001869026"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_310.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/81453"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/81453'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/81453'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/81453'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/81453'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      21 PREDICATES      93 URIs      75 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/81453 schema:about N1645c43ef39b44498fda58d81625a84b
    2 N246ff360a60f427997bc3781dddef389
    3 N26f4679fb4f04319a3b3a248cf32456a
    4 N39ff4c7f89dc4e4b85ccf913ad1dabc8
    5 N515cd8db9fb6418caa4fc7441992f5ed
    6 N71d9b9631ba64a809167a76e9b2b9f16
    7 N7b59fa79c9df46078a96314b8a143556
    8 Naff40894bdfc4d5b83232e54aa1ec5f2
    9 Nd114a15d2909424ebfd8bf9df6e50e0f
    10 Nf3debc0fa3b748c3a696ab7db446640f
    11 Nfc98003958c94005b9a3473b47307fa1
    12 anzsrc-for:11
    13 anzsrc-for:1109
    14 schema:author N30525251e5dd448388d57682d210d086
    15 schema:citation sg:pub.10.1007/bf00275687
    16 sg:pub.10.1023/a:1008910918445
    17 sg:pub.10.1038/16026
    18 sg:pub.10.1038/22553
    19 sg:pub.10.1038/25665
    20 sg:pub.10.1038/36103
    21 sg:pub.10.1038/382807a0
    22 sg:pub.10.1038/383076a0
    23 sg:pub.10.1038/387278a0
    24 sg:pub.10.1038/78829
    25 schema:datePublished 2000-11
    26 schema:datePublishedReg 2000-11-01
    27 schema:description Synaptic plasticity provides the basis for most models of learning, memory and development in neural circuits. To generate realistic results, synapse-specific Hebbian forms of plasticity, such as long-term potentiation and depression, must be augmented by global processes that regulate overall levels of neuronal and network activity. Regulatory processes are often as important as the more intensively studied Hebbian processes in determining the consequences of synaptic plasticity for network function. Recent experimental results suggest several novel mechanisms for regulating levels of activity in conjunction with Hebbian synaptic modification. We review three of them—synaptic scaling, spike-timing dependent plasticity and synaptic redistribution—and discuss their functional implications.
    28 schema:genre article
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N360177a1e450460fa39a849255089323
    31 N9da315be904c485cac091e70430d4513
    32 sg:journal.1118362
    33 schema:keywords Hebbian forms
    34 Hebbian processes
    35 Hebbian synaptic modification
    36 activity
    37 basis
    38 beast
    39 circuit
    40 conjunction
    41 consequences
    42 dependent plasticity
    43 depression
    44 development
    45 experimental results
    46 form
    47 function
    48 functional implications
    49 global processes
    50 implications
    51 learning
    52 level of activity
    53 levels
    54 long-term potentiation
    55 mechanism
    56 memory
    57 model
    58 modification
    59 most models
    60 network activity
    61 network functions
    62 neural circuits
    63 novel mechanism
    64 overall level
    65 plasticity
    66 potentiation
    67 process
    68 realistic results
    69 recent experimental results
    70 redistribution
    71 regulatory processes
    72 results
    73 scaling
    74 spike-timing dependent plasticity
    75 synaptic modification
    76 synaptic plasticity
    77 synaptic redistribution
    78 synaptic scaling
    79 schema:name Synaptic plasticity: taming the beast
    80 schema:pagination 1178-1183
    81 schema:productId N3c4a220585db416ab991dc87b7db3f53
    82 N873fcc631e6647b998ac8314386b074c
    83 N9ec75a094d2741cfb66b0a000c4de015
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869026
    85 https://doi.org/10.1038/81453
    86 schema:sdDatePublished 2022-10-01T06:30
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher Na5251020ebbf4da99a9d25b411f8ee43
    89 schema:url https://doi.org/10.1038/81453
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N1645c43ef39b44498fda58d81625a84b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Neuronal Plasticity
    95 rdf:type schema:DefinedTerm
    96 N246ff360a60f427997bc3781dddef389 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Models, Neurological
    98 rdf:type schema:DefinedTerm
    99 N26f4679fb4f04319a3b3a248cf32456a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Synaptic Transmission
    101 rdf:type schema:DefinedTerm
    102 N30525251e5dd448388d57682d210d086 rdf:first sg:person.01015001074.26
    103 rdf:rest Nc8b0f3977e47413fa9cb956102d4da80
    104 N360177a1e450460fa39a849255089323 schema:issueNumber Suppl 11
    105 rdf:type schema:PublicationIssue
    106 N39ff4c7f89dc4e4b85ccf913ad1dabc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Synapses
    108 rdf:type schema:DefinedTerm
    109 N3c4a220585db416ab991dc87b7db3f53 schema:name dimensions_id
    110 schema:value pub.1001869026
    111 rdf:type schema:PropertyValue
    112 N515cd8db9fb6418caa4fc7441992f5ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Action Potentials
    114 rdf:type schema:DefinedTerm
    115 N71d9b9631ba64a809167a76e9b2b9f16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Neurons
    117 rdf:type schema:DefinedTerm
    118 N7b59fa79c9df46078a96314b8a143556 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Humans
    120 rdf:type schema:DefinedTerm
    121 N873fcc631e6647b998ac8314386b074c schema:name pubmed_id
    122 schema:value 11127835
    123 rdf:type schema:PropertyValue
    124 N9da315be904c485cac091e70430d4513 schema:volumeNumber 3
    125 rdf:type schema:PublicationVolume
    126 N9ec75a094d2741cfb66b0a000c4de015 schema:name doi
    127 schema:value 10.1038/81453
    128 rdf:type schema:PropertyValue
    129 Na5251020ebbf4da99a9d25b411f8ee43 schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Naff40894bdfc4d5b83232e54aa1ec5f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Receptors, Glutamate
    133 rdf:type schema:DefinedTerm
    134 Nc8b0f3977e47413fa9cb956102d4da80 rdf:first sg:person.01114173452.11
    135 rdf:rest rdf:nil
    136 Nd114a15d2909424ebfd8bf9df6e50e0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Nerve Net
    138 rdf:type schema:DefinedTerm
    139 Nf3debc0fa3b748c3a696ab7db446640f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Long-Term Potentiation
    141 rdf:type schema:DefinedTerm
    142 Nfc98003958c94005b9a3473b47307fa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Animals
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Medical and Health Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Neurosciences
    150 rdf:type schema:DefinedTerm
    151 sg:grant.2506307 http://pending.schema.org/fundedItem sg:pub.10.1038/81453
    152 rdf:type schema:MonetaryGrant
    153 sg:grant.2548905 http://pending.schema.org/fundedItem sg:pub.10.1038/81453
    154 rdf:type schema:MonetaryGrant
    155 sg:journal.1118362 schema:issn 1097-6256
    156 1546-1726
    157 schema:name Nature Neuroscience
    158 schema:publisher Springer Nature
    159 rdf:type schema:Periodical
    160 sg:person.01015001074.26 schema:affiliation grid-institutes:grid.253264.4
    161 schema:familyName Abbott
    162 schema:givenName L. F.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015001074.26
    164 rdf:type schema:Person
    165 sg:person.01114173452.11 schema:affiliation grid-institutes:grid.253264.4
    166 schema:familyName Nelson
    167 schema:givenName Sacha B.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114173452.11
    169 rdf:type schema:Person
    170 sg:pub.10.1007/bf00275687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041038550
    171 https://doi.org/10.1007/bf00275687
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1023/a:1008910918445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034460973
    174 https://doi.org/10.1023/a:1008910918445
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/16026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050852262
    177 https://doi.org/10.1038/16026
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/22553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051759067
    180 https://doi.org/10.1038/22553
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/25665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033198781
    183 https://doi.org/10.1038/25665
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/36103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033478989
    186 https://doi.org/10.1038/36103
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/382807a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011717289
    189 https://doi.org/10.1038/382807a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/383076a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
    192 https://doi.org/10.1038/383076a0
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/387278a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052937892
    195 https://doi.org/10.1038/387278a0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/78829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009745377
    198 https://doi.org/10.1038/78829
    199 rdf:type schema:CreativeWork
    200 grid-institutes:grid.253264.4 schema:alternateName Department of Biology and Volen Center, Brandeis University, 02454-9110, Waltham, Massachusetts, USA
    201 schema:name Department of Biology and Volen Center, Brandeis University, 02454-9110, Waltham, Massachusetts, USA
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...