Wavelength-shifting molecular beacons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

Sanjay Tyagi, Salvatore A.E. Marras, Fred Russell Kramer

ABSTRACT

We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce—not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses. More... »

PAGES

1191-1196

Journal

TITLE

Nature Biotechnology

ISSUE

11

VOLUME

18

Related Patents

  • Systems, Methods, And Apparatus For Imaging Of Diffuse Media Featuring Cross-Modality Weighting Of Fluorescent And Bioluminescent Sources
  • Method Using A Nonlinear Optical Technique For Detection Of Interactions Involving A Conformational Change
  • Nucleic Acid Enzyme Biosensors For Ions
  • Intramolecularly-Quenched Near Infrared Fluorescent Probes
  • Device For Microbiological Analysis
  • Systems And Methods For Virtual Index-Matching Of Diffusive Media
  • Fluorescence Based Biosensor
  • Homogeneous Multiplex Screening Assays And Kits
  • Polynucleotides For The Detection Of Escherichia Coli O157:H7 And Escherichia Coli O157:Nm Verotoxin Producers
  • Sensor Housing And Reagent Chemistry
  • Eliminating Signal Interference In Nucleotide Sequence Analysis; Adjust Probe Sequences, Monitor Signal From Adjusted Probes During Nucleotide Sequences Analysis
  • Methods For Sequential Dna Amplification And Sequencing
  • Fluorescence-Mediated Molecular Tomography
  • Amine Functionalized Superparamagnetic Nanoparticles For The Synthesis Of Bioconjugates And Uses Therefor
  • Fluorescent Imaging Agents
  • Systems And Methods For Tomographic Imaging In Diffuse Media Using A Hybrid Inversion Technique
  • Single-Stranded Polynucleotide Probe For Use As Diagnostic Tool In Genetic Analysis; Fluorescence Resonance Energy Transfer (Fret)
  • Lateral Flow Devices
  • Methods, Systems, And Compositions For Counting Nucleic Acid Molecules
  • Fluorescent Sensor For Mercury
  • Nucleic Acid Based Fluorescent Sensor For Copper Detection
  • Imaging Volumes With Arbitrary Geometries In Contact And Non-Contact Tomography
  • Use Of Products Of Pcr Amplification Carrying Elements Of Secondary Structure To Improve Pcr-Based Nucleic Acid Detection
  • Oligonucleotide For Use As Signaling Tool In Genetic Analysis
  • Fluorescent Imaging Agents
  • Methods, Systems, And Compositions For Counting Nucleic Acid Molecules
  • Fluorescent Imaging Agents
  • Aptamer-Based Colorimetric Sensor Systems
  • Nucleic Acid Based Fluorescent Sensor For Mercury Detection
  • Low Temperature Linear-After-The-Exponential Polymerase Chain Reactions; Amplicons; Fluorescent Dna Dye; Quantitative Analysis
  • Method Of Detecting Specific Fragments Of Dna Or Rna With The Aid Of A Real-Time Polymerase Chain Reaction
  • Use Of Base-Modified Deoxynucleoside Triphosphates To Improve Nucleic Acid Detection
  • Light Emitting Probes
  • Novel Nucleic Acid Probe And Novel Method Of Assaying Nucleic Acids Using The Same
  • Device For Microbiological Analysis
  • Inversion Probes
  • Dark Quenchers, Probes And Other Conjugates Incorporating The Same, And Their Use
  • Homogeneous Luminescence Bioassay
  • Methods For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Mri Contrast Agents And High-Throughput Screening By Mri
  • Reaction Mixtures For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Biocompatible Fluorescent Metal Oxide Nanoparticles
  • Fluorescence Based Biosensor
  • Nucleic Acid Enzyme Biosensors For Ions
  • Combined X-Ray And Optical Tomographic Imaging System
  • Aptamer- And Nucleic Acid Enzyme-Based Systems For Simultaneous Detection Of Multiple Analytes
  • Methods For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Systems And Methods For Virtual Index-Matching Of Diffusive Media
  • Fluorescence-Mediated Molecular Tomography
  • Methods And Compositions For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Imaging Systems Featuring Waveguiding Compensation
  • Nonlinear Optical Detection Of Molecules Comprising An Unnatural Amino Acid Possessing A Hyperpolarizability
  • Aptamer Based Colorimetric Sensor Systems
  • Amphiphilic Substances And Functionalized Lipid Vesicles Including The Same
  • Imaging Volumes With Arbitrary Geometries In Non-Contact Tomography
  • Imaging Systems Featuring Waveguiding Compensation
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/81192

    DOI

    http://dx.doi.org/10.1038/81192

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044094372

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11062440


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binding, Competitive", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Energy Transfer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescence Polarization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescent Dyes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Probes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Fluorescence", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tyagi", 
            "givenName": "Sanjay", 
            "id": "sg:person.01327277653.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327277653.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marras", 
            "givenName": "Salvatore A.E.", 
            "id": "sg:person.01155315452.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155315452.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kramer", 
            "givenName": "Fred Russell", 
            "id": "sg:person.01164065707.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164065707.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt0396-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007118508", 
              "https://doi.org/10.1038/nbt0396-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/72006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024163161", 
              "https://doi.org/10.1038/72006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0398-350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032260358", 
              "https://doi.org/10.1038/nm0398-350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0198-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027516191", 
              "https://doi.org/10.1038/nbt0198-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0498-359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040783973", 
              "https://doi.org/10.1038/nbt0498-359"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-11", 
        "datePublishedReg": "2000-11-01", 
        "description": "We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce\u2014not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/81192", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2533460", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2503436", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "molecular beacons", 
          "complementary nucleic acid targets", 
          "conventional molecular beacons", 
          "nucleic acid hybridization probes", 
          "fluorescence resonance energy transfer", 
          "emission range", 
          "nucleic acid targets", 
          "resonance energy transfer", 
          "presence of target", 
          "emission color", 
          "monochromatic light source", 
          "acid targets", 
          "fluorophores", 
          "energy transfer", 
          "emission spectra", 
          "light source", 
          "probe", 
          "excitation light", 
          "quencher", 
          "energy", 
          "same probe", 
          "spectral characteristics", 
          "transfer", 
          "wavelength range", 
          "separate fluorophores", 
          "range", 
          "different colors", 
          "fluorescent light", 
          "spectra", 
          "absorption", 
          "light", 
          "beacons", 
          "color", 
          "emission", 
          "hybridization probes", 
          "presence", 
          "shift", 
          "source", 
          "variety", 
          "target", 
          "form", 
          "analysis", 
          "absence", 
          "use", 
          "place", 
          "characteristics", 
          "twin functions", 
          "simplifies", 
          "function", 
          "genetic analysis"
        ], 
        "name": "Wavelength-shifting molecular beacons", 
        "pagination": "1191-1196", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044094372"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/81192"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11062440"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/81192", 
          "https://app.dimensions.ai/details/publication/pub.1044094372"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_345.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/81192"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/81192'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/81192'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/81192'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/81192'


     

    This table displays all metadata directly associated to this object as RDF triples.

    201 TRIPLES      21 PREDICATES      94 URIs      81 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/81192 schema:about N06d81189a2b940b292f58d55e1ff80dd
    2 N102202670e95414189f73b5ca4ac8499
    3 N37191ca631f044b0ae29401efc981c4f
    4 N52d5d053526f4dd58da51d2718132759
    5 N6210d24e1899485299063589bfbbb894
    6 N698ad78a46334f02890f6102d334e909
    7 N8e5c6151630f47e5b56ed00f633d0dbd
    8 N9d967ea4a7c34e2eba3960cf15516be9
    9 N9daf72f39c064f388876a25425d11061
    10 Naa82a1169ca24be4a8104c01ae137bba
    11 Nabf6aa6e859e4753aa9e0e78109a7897
    12 Neca65737111f4809bf5e610101a77310
    13 Nf326d68d92e7467887104e4bde27f95c
    14 anzsrc-for:03
    15 anzsrc-for:0303
    16 schema:author N04f51db9491541d0a34e510189c30444
    17 schema:citation sg:pub.10.1038/72006
    18 sg:pub.10.1038/nbt0198-49
    19 sg:pub.10.1038/nbt0396-303
    20 sg:pub.10.1038/nbt0498-359
    21 sg:pub.10.1038/nm0398-350
    22 schema:datePublished 2000-11
    23 schema:datePublishedReg 2000-11-01
    24 schema:description We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce—not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf Naf3d51098bb84add80e110bc0a5481eb
    28 Nb0afacab9b4d4c3283ab2422335d775d
    29 sg:journal.1115214
    30 schema:keywords absence
    31 absorption
    32 acid targets
    33 analysis
    34 beacons
    35 characteristics
    36 color
    37 complementary nucleic acid targets
    38 conventional molecular beacons
    39 different colors
    40 emission
    41 emission color
    42 emission range
    43 emission spectra
    44 energy
    45 energy transfer
    46 excitation light
    47 fluorescence resonance energy transfer
    48 fluorescent light
    49 fluorophores
    50 form
    51 function
    52 genetic analysis
    53 hybridization probes
    54 light
    55 light source
    56 molecular beacons
    57 monochromatic light source
    58 nucleic acid hybridization probes
    59 nucleic acid targets
    60 place
    61 presence
    62 presence of target
    63 probe
    64 quencher
    65 range
    66 resonance energy transfer
    67 same probe
    68 separate fluorophores
    69 shift
    70 simplifies
    71 source
    72 spectra
    73 spectral characteristics
    74 target
    75 transfer
    76 twin functions
    77 use
    78 variety
    79 wavelength range
    80 schema:name Wavelength-shifting molecular beacons
    81 schema:pagination 1191-1196
    82 schema:productId N9a26259a26e74a8b804b425b3c3a4800
    83 Ne22c181b00e24ddb94ed85a3aaa04c41
    84 Ne245b892a2254336848094768c1a4d77
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044094372
    86 https://doi.org/10.1038/81192
    87 schema:sdDatePublished 2022-10-01T06:31
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N72c82bff0b1e48eeacd71f47622f1814
    90 schema:url https://doi.org/10.1038/81192
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N04f51db9491541d0a34e510189c30444 rdf:first sg:person.01327277653.33
    95 rdf:rest N4c292be8221345528dfaa3f9550fa222
    96 N06d81189a2b940b292f58d55e1ff80dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Spectrometry, Fluorescence
    98 rdf:type schema:DefinedTerm
    99 N102202670e95414189f73b5ca4ac8499 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Oligonucleotide Probes
    101 rdf:type schema:DefinedTerm
    102 N37191ca631f044b0ae29401efc981c4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Binding, Competitive
    104 rdf:type schema:DefinedTerm
    105 N4c292be8221345528dfaa3f9550fa222 rdf:first sg:person.01155315452.16
    106 rdf:rest N96aa0820383d414ea8df327335f835bc
    107 N52d5d053526f4dd58da51d2718132759 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Genotype
    109 rdf:type schema:DefinedTerm
    110 N6210d24e1899485299063589bfbbb894 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Fluorescence Polarization
    112 rdf:type schema:DefinedTerm
    113 N698ad78a46334f02890f6102d334e909 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Nucleic Acid Hybridization
    115 rdf:type schema:DefinedTerm
    116 N72c82bff0b1e48eeacd71f47622f1814 schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N8e5c6151630f47e5b56ed00f633d0dbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Genetic Techniques
    120 rdf:type schema:DefinedTerm
    121 N96aa0820383d414ea8df327335f835bc rdf:first sg:person.01164065707.84
    122 rdf:rest rdf:nil
    123 N9a26259a26e74a8b804b425b3c3a4800 schema:name dimensions_id
    124 schema:value pub.1044094372
    125 rdf:type schema:PropertyValue
    126 N9d967ea4a7c34e2eba3960cf15516be9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Alleles
    128 rdf:type schema:DefinedTerm
    129 N9daf72f39c064f388876a25425d11061 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Humans
    131 rdf:type schema:DefinedTerm
    132 Naa82a1169ca24be4a8104c01ae137bba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Polymerase Chain Reaction
    134 rdf:type schema:DefinedTerm
    135 Nabf6aa6e859e4753aa9e0e78109a7897 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Fluorescent Dyes
    137 rdf:type schema:DefinedTerm
    138 Naf3d51098bb84add80e110bc0a5481eb schema:volumeNumber 18
    139 rdf:type schema:PublicationVolume
    140 Nb0afacab9b4d4c3283ab2422335d775d schema:issueNumber 11
    141 rdf:type schema:PublicationIssue
    142 Ne22c181b00e24ddb94ed85a3aaa04c41 schema:name pubmed_id
    143 schema:value 11062440
    144 rdf:type schema:PropertyValue
    145 Ne245b892a2254336848094768c1a4d77 schema:name doi
    146 schema:value 10.1038/81192
    147 rdf:type schema:PropertyValue
    148 Neca65737111f4809bf5e610101a77310 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Energy Transfer
    150 rdf:type schema:DefinedTerm
    151 Nf326d68d92e7467887104e4bde27f95c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Sequence Analysis, DNA
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Chemical Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Macromolecular and Materials Chemistry
    159 rdf:type schema:DefinedTerm
    160 sg:grant.2503436 http://pending.schema.org/fundedItem sg:pub.10.1038/81192
    161 rdf:type schema:MonetaryGrant
    162 sg:grant.2533460 http://pending.schema.org/fundedItem sg:pub.10.1038/81192
    163 rdf:type schema:MonetaryGrant
    164 sg:journal.1115214 schema:issn 1087-0156
    165 1546-1696
    166 schema:name Nature Biotechnology
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.01155315452.16 schema:affiliation grid-institutes:grid.430387.b
    170 schema:familyName Marras
    171 schema:givenName Salvatore A.E.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155315452.16
    173 rdf:type schema:Person
    174 sg:person.01164065707.84 schema:affiliation grid-institutes:grid.430387.b
    175 schema:familyName Kramer
    176 schema:givenName Fred Russell
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164065707.84
    178 rdf:type schema:Person
    179 sg:person.01327277653.33 schema:affiliation grid-institutes:grid.430387.b
    180 schema:familyName Tyagi
    181 schema:givenName Sanjay
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327277653.33
    183 rdf:type schema:Person
    184 sg:pub.10.1038/72006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163161
    185 https://doi.org/10.1038/72006
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nbt0198-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516191
    188 https://doi.org/10.1038/nbt0198-49
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nbt0396-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118508
    191 https://doi.org/10.1038/nbt0396-303
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nbt0498-359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040783973
    194 https://doi.org/10.1038/nbt0498-359
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nm0398-350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032260358
    197 https://doi.org/10.1038/nm0398-350
    198 rdf:type schema:CreativeWork
    199 grid-institutes:grid.430387.b schema:alternateName Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY
    200 schema:name Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY
    201 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...