Wavelength-shifting molecular beacons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

Sanjay Tyagi, Salvatore A.E. Marras, Fred Russell Kramer

ABSTRACT

We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce—not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses. More... »

PAGES

1191-1196

Journal

TITLE

Nature Biotechnology

ISSUE

11

VOLUME

18

Related Patents

  • Intramolecularly-Quenched Near Infrared Fluorescent Probes
  • Device For Microbiological Analysis
  • Systems, Methods, And Apparatus For Imaging Of Diffuse Media Featuring Cross-Modality Weighting Of Fluorescent And Bioluminescent Sources
  • Nucleic Acid Enzyme Biosensors For Ions
  • Method Using A Nonlinear Optical Technique For Detection Of Interactions Involving A Conformational Change
  • Systems And Methods For Virtual Index-Matching Of Diffusive Media
  • Lateral Flow Devices
  • Single-Stranded Polynucleotide Probe For Use As Diagnostic Tool In Genetic Analysis; Fluorescence Resonance Energy Transfer (Fret)
  • Methods For Sequential Dna Amplification And Sequencing
  • Amine Functionalized Superparamagnetic Nanoparticles For The Synthesis Of Bioconjugates And Uses Therefor
  • Sensor Housing And Reagent Chemistry
  • Eliminating Signal Interference In Nucleotide Sequence Analysis; Adjust Probe Sequences, Monitor Signal From Adjusted Probes During Nucleotide Sequences Analysis
  • Fluorescence-Mediated Molecular Tomography
  • Polynucleotides For The Detection Of Escherichia Coli O157:H7 And Escherichia Coli O157:Nm Verotoxin Producers
  • Systems And Methods For Tomographic Imaging In Diffuse Media Using A Hybrid Inversion Technique
  • Fluorescent Imaging Agents
  • Fluorescence Based Biosensor
  • Homogeneous Multiplex Screening Assays And Kits
  • Use Of Products Of Pcr Amplification Carrying Elements Of Secondary Structure To Improve Pcr-Based Nucleic Acid Detection
  • Imaging Volumes With Arbitrary Geometries In Contact And Non-Contact Tomography
  • Methods, Systems, And Compositions For Counting Nucleic Acid Molecules
  • Nucleic Acid Based Fluorescent Sensor For Copper Detection
  • Nucleic Acid Based Fluorescent Sensor For Mercury Detection
  • Fluorescent Sensor For Mercury
  • Fluorescent Imaging Agents
  • Methods, Systems, And Compositions For Counting Nucleic Acid Molecules
  • Aptamer-Based Colorimetric Sensor Systems
  • Low Temperature Linear-After-The-Exponential Polymerase Chain Reactions; Amplicons; Fluorescent Dna Dye; Quantitative Analysis
  • Method Of Detecting Specific Fragments Of Dna Or Rna With The Aid Of A Real-Time Polymerase Chain Reaction
  • Fluorescent Imaging Agents
  • Oligonucleotide For Use As Signaling Tool In Genetic Analysis
  • Combined X-Ray And Optical Tomographic Imaging System
  • Device For Microbiological Analysis
  • Reaction Mixtures For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Light Emitting Probes
  • Fluorescence Based Biosensor
  • Use Of Base-Modified Deoxynucleoside Triphosphates To Improve Nucleic Acid Detection
  • Nucleic Acid Enzyme Biosensors For Ions
  • Methods For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Dark Quenchers, Probes And Other Conjugates Incorporating The Same, And Their Use
  • Biocompatible Fluorescent Metal Oxide Nanoparticles
  • Inversion Probes
  • Homogeneous Luminescence Bioassay
  • Novel Nucleic Acid Probe And Novel Method Of Assaying Nucleic Acids Using The Same
  • Mri Contrast Agents And High-Throughput Screening By Mri
  • Imaging Systems Featuring Waveguiding Compensation
  • Amphiphilic Substances And Functionalized Lipid Vesicles Including The Same
  • Aptamer Based Colorimetric Sensor Systems
  • Imaging Systems Featuring Waveguiding Compensation
  • Fluorescence-Mediated Molecular Tomography
  • Aptamer- And Nucleic Acid Enzyme-Based Systems For Simultaneous Detection Of Multiple Analytes
  • Nonlinear Optical Detection Of Molecules Comprising An Unnatural Amino Acid Possessing A Hyperpolarizability
  • Methods For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Imaging Volumes With Arbitrary Geometries In Non-Contact Tomography
  • Methods And Compositions For Quantitative Amplification And Detection Over A Wide Dynamic Range
  • Systems And Methods For Virtual Index-Matching Of Diffusive Media
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/81192

    DOI

    http://dx.doi.org/10.1038/81192

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044094372

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11062440


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binding, Competitive", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Energy Transfer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescence Polarization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescent Dyes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Probes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Fluorescence", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tyagi", 
            "givenName": "Sanjay", 
            "id": "sg:person.01327277653.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327277653.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marras", 
            "givenName": "Salvatore A.E.", 
            "id": "sg:person.01155315452.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155315452.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kramer", 
            "givenName": "Fred Russell", 
            "id": "sg:person.01164065707.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164065707.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt0396-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007118508", 
              "https://doi.org/10.1038/nbt0396-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0398-350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032260358", 
              "https://doi.org/10.1038/nm0398-350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0498-359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040783973", 
              "https://doi.org/10.1038/nbt0498-359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/72006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024163161", 
              "https://doi.org/10.1038/72006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0198-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027516191", 
              "https://doi.org/10.1038/nbt0198-49"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-11", 
        "datePublishedReg": "2000-11-01", 
        "description": "We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce\u2014not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/81192", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2533460", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2503436", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "molecular beacons", 
          "complementary nucleic acid targets", 
          "conventional molecular beacons", 
          "nucleic acid hybridization probes", 
          "fluorescence resonance energy transfer", 
          "emission range", 
          "nucleic acid targets", 
          "resonance energy transfer", 
          "presence of target", 
          "emission color", 
          "monochromatic light source", 
          "acid targets", 
          "fluorophores", 
          "energy transfer", 
          "emission spectra", 
          "light source", 
          "probe", 
          "excitation light", 
          "quencher", 
          "energy", 
          "same probe", 
          "spectral characteristics", 
          "transfer", 
          "wavelength range", 
          "separate fluorophores", 
          "range", 
          "different colors", 
          "fluorescent light", 
          "spectra", 
          "absorption", 
          "light", 
          "beacons", 
          "color", 
          "emission", 
          "hybridization probes", 
          "presence", 
          "shift", 
          "source", 
          "variety", 
          "target", 
          "form", 
          "analysis", 
          "absence", 
          "use", 
          "place", 
          "characteristics", 
          "twin functions", 
          "simplifies", 
          "function", 
          "genetic analysis"
        ], 
        "name": "Wavelength-shifting molecular beacons", 
        "pagination": "1191-1196", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044094372"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/81192"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11062440"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/81192", 
          "https://app.dimensions.ai/details/publication/pub.1044094372"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_320.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/81192"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/81192'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/81192'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/81192'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/81192'


     

    This table displays all metadata directly associated to this object as RDF triples.

    201 TRIPLES      21 PREDICATES      94 URIs      81 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/81192 schema:about N0ecb15a66aa5478ab21208e0a18e8067
    2 N37aa459a760b44eeb6c679ff26d9e729
    3 N3b79967d4142440ea15d5b70908c34ad
    4 N4ab1decc5db94871b00ebebc5d961ba5
    5 N7067e75e82b9471baa7bdf0bc8ead5da
    6 N7112b38ab8f2484695ce39152d490eb5
    7 N84c6bce4c06143fe8da85f808595721d
    8 Na803dd4628fb4a97b8fea34c775f64b0
    9 Nddf431e1f0174877a1b4e67885c83dc8
    10 Ndea8444ad84746b39e998a4d7d93898d
    11 Ne93790f3427248e3bb5f43b4747e4060
    12 Nf4d10ef4d3c845bbb3f253cba7064fec
    13 Nfd8d8b21bd8b4f27944edcc04c57ff9f
    14 anzsrc-for:03
    15 anzsrc-for:0303
    16 schema:author N73113615192945d5834d2ff96eb3755d
    17 schema:citation sg:pub.10.1038/72006
    18 sg:pub.10.1038/nbt0198-49
    19 sg:pub.10.1038/nbt0396-303
    20 sg:pub.10.1038/nbt0498-359
    21 sg:pub.10.1038/nm0398-350
    22 schema:datePublished 2000-11
    23 schema:datePublishedReg 2000-11-01
    24 schema:description We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce—not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N11fe5851d7ed4779848d3fa73126f91f
    28 N2bac95313207420c89822d42b3756203
    29 sg:journal.1115214
    30 schema:keywords absence
    31 absorption
    32 acid targets
    33 analysis
    34 beacons
    35 characteristics
    36 color
    37 complementary nucleic acid targets
    38 conventional molecular beacons
    39 different colors
    40 emission
    41 emission color
    42 emission range
    43 emission spectra
    44 energy
    45 energy transfer
    46 excitation light
    47 fluorescence resonance energy transfer
    48 fluorescent light
    49 fluorophores
    50 form
    51 function
    52 genetic analysis
    53 hybridization probes
    54 light
    55 light source
    56 molecular beacons
    57 monochromatic light source
    58 nucleic acid hybridization probes
    59 nucleic acid targets
    60 place
    61 presence
    62 presence of target
    63 probe
    64 quencher
    65 range
    66 resonance energy transfer
    67 same probe
    68 separate fluorophores
    69 shift
    70 simplifies
    71 source
    72 spectra
    73 spectral characteristics
    74 target
    75 transfer
    76 twin functions
    77 use
    78 variety
    79 wavelength range
    80 schema:name Wavelength-shifting molecular beacons
    81 schema:pagination 1191-1196
    82 schema:productId N33991e5a9560402990c3693d4ddce371
    83 N9d0b01c99d044e818fb47e6ea270788b
    84 Nfee1914c145b4f0d8fe55cae1ab52377
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044094372
    86 https://doi.org/10.1038/81192
    87 schema:sdDatePublished 2022-09-02T15:49
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N868719391eef4a72a1f5979a8bb8d90d
    90 schema:url https://doi.org/10.1038/81192
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N0ecb15a66aa5478ab21208e0a18e8067 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Oligonucleotide Probes
    96 rdf:type schema:DefinedTerm
    97 N11fe5851d7ed4779848d3fa73126f91f schema:volumeNumber 18
    98 rdf:type schema:PublicationVolume
    99 N2bac95313207420c89822d42b3756203 schema:issueNumber 11
    100 rdf:type schema:PublicationIssue
    101 N33991e5a9560402990c3693d4ddce371 schema:name pubmed_id
    102 schema:value 11062440
    103 rdf:type schema:PropertyValue
    104 N37aa459a760b44eeb6c679ff26d9e729 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Genotype
    106 rdf:type schema:DefinedTerm
    107 N3b79967d4142440ea15d5b70908c34ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Humans
    109 rdf:type schema:DefinedTerm
    110 N4ab1decc5db94871b00ebebc5d961ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Energy Transfer
    112 rdf:type schema:DefinedTerm
    113 N4d13c994eafe4f06b66077d611d96d74 rdf:first sg:person.01164065707.84
    114 rdf:rest rdf:nil
    115 N511207971a834db28b2f18e79e4e0344 rdf:first sg:person.01155315452.16
    116 rdf:rest N4d13c994eafe4f06b66077d611d96d74
    117 N7067e75e82b9471baa7bdf0bc8ead5da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Fluorescent Dyes
    119 rdf:type schema:DefinedTerm
    120 N7112b38ab8f2484695ce39152d490eb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Sequence Analysis, DNA
    122 rdf:type schema:DefinedTerm
    123 N73113615192945d5834d2ff96eb3755d rdf:first sg:person.01327277653.33
    124 rdf:rest N511207971a834db28b2f18e79e4e0344
    125 N84c6bce4c06143fe8da85f808595721d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Polymerase Chain Reaction
    127 rdf:type schema:DefinedTerm
    128 N868719391eef4a72a1f5979a8bb8d90d schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 N9d0b01c99d044e818fb47e6ea270788b schema:name doi
    131 schema:value 10.1038/81192
    132 rdf:type schema:PropertyValue
    133 Na803dd4628fb4a97b8fea34c775f64b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Alleles
    135 rdf:type schema:DefinedTerm
    136 Nddf431e1f0174877a1b4e67885c83dc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Nucleic Acid Hybridization
    138 rdf:type schema:DefinedTerm
    139 Ndea8444ad84746b39e998a4d7d93898d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Fluorescence Polarization
    141 rdf:type schema:DefinedTerm
    142 Ne93790f3427248e3bb5f43b4747e4060 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Genetic Techniques
    144 rdf:type schema:DefinedTerm
    145 Nf4d10ef4d3c845bbb3f253cba7064fec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Spectrometry, Fluorescence
    147 rdf:type schema:DefinedTerm
    148 Nfd8d8b21bd8b4f27944edcc04c57ff9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Binding, Competitive
    150 rdf:type schema:DefinedTerm
    151 Nfee1914c145b4f0d8fe55cae1ab52377 schema:name dimensions_id
    152 schema:value pub.1044094372
    153 rdf:type schema:PropertyValue
    154 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Chemical Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Macromolecular and Materials Chemistry
    159 rdf:type schema:DefinedTerm
    160 sg:grant.2503436 http://pending.schema.org/fundedItem sg:pub.10.1038/81192
    161 rdf:type schema:MonetaryGrant
    162 sg:grant.2533460 http://pending.schema.org/fundedItem sg:pub.10.1038/81192
    163 rdf:type schema:MonetaryGrant
    164 sg:journal.1115214 schema:issn 1087-0156
    165 1546-1696
    166 schema:name Nature Biotechnology
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.01155315452.16 schema:affiliation grid-institutes:grid.430387.b
    170 schema:familyName Marras
    171 schema:givenName Salvatore A.E.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155315452.16
    173 rdf:type schema:Person
    174 sg:person.01164065707.84 schema:affiliation grid-institutes:grid.430387.b
    175 schema:familyName Kramer
    176 schema:givenName Fred Russell
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164065707.84
    178 rdf:type schema:Person
    179 sg:person.01327277653.33 schema:affiliation grid-institutes:grid.430387.b
    180 schema:familyName Tyagi
    181 schema:givenName Sanjay
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327277653.33
    183 rdf:type schema:Person
    184 sg:pub.10.1038/72006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163161
    185 https://doi.org/10.1038/72006
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nbt0198-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516191
    188 https://doi.org/10.1038/nbt0198-49
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nbt0396-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118508
    191 https://doi.org/10.1038/nbt0396-303
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nbt0498-359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040783973
    194 https://doi.org/10.1038/nbt0498-359
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nm0398-350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032260358
    197 https://doi.org/10.1038/nm0398-350
    198 rdf:type schema:CreativeWork
    199 grid-institutes:grid.430387.b schema:alternateName Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY
    200 schema:name Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, 10016, New York, NY
    201 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...