Metabolite profiling for plant functional genomics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

Oliver Fiehn, Joachim Kopka, Peter Dörmann, Thomas Altmann, Richard N. Trethewey, Lothar Willmitzer

ABSTRACT

Multiparallel analyses of mRNA and proteins are central to today's functional genomics initiatives. We describe here the use of metabolite profiling as a new tool for a comparative display of gene function. It has the potential not only to provide deeper insight into complex regulatory processes but also to determine phenotype directly. Using gas chromatography/mass spectrometry (GC/MS), we automatically quantified 326 distinct compounds from Arabidopsis thaliana leaf extracts. It was possible to assign a chemical structure to approximately half of these compounds. Comparison of four Arabidopsis genotypes (two homozygous ecotypes and a mutant of each ecotype) showed that each genotype possesses a distinct metabolic profile. Data mining tools such as principal component analysis enabled the assignment of “metabolic phenotypes” using these large data sets. The metabolic phenotypes of the two ecotypes were more divergent than were the metabolic phenotypes of the single-loci mutant and their parental ecotypes. These results demonstrate the use of metabolite profiling as a tool to significantly extend and enhance the power of existing functional genomics approaches. More... »

PAGES

1157-1161

References to SciGraph publications

Journal

TITLE

Nature Biotechnology

ISSUE

11

VOLUME

18

Related Patents

  • Fungal Endophytes For Improved Crop Yields And Protection From Pests
  • Plants Containing Beneficial Endophytes
  • High Mass Accuracy Filtering For Improved Spectral Matching Of High-Resolution Gas Chromatography-Mass Spectrometry Data Against Unit-Resolution Reference Databases
  • Biomarkers For Diagnosing Multiple Sclerosis, And Methods Thereof
  • Regulated Gene Expression In Plants
  • Seed-Origin Endophyte Populations, Compositions, And Methods Of Use
  • Endophytes, Associated Compositions, And Methods Of Use Thereof
  • Systems And Methods For Reconstructing Gene Networks In Segregating Populations
  • Methods For The Diagnosis Of Colorectal Cancer And Ovarian Cancer Health States
  • Method For Producing Plant Seed Containing Endophytic Micro-Organisms
  • Seed-Origin Endophyte Populations, Compositions, And Methods Of Use
  • Computer Systems And Methods For Associating Genes With Traits Using Cross Species Data
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Endophytes, Associated Compositions, And Methods Of Use Thereof
  • System For Microvolume Laser Scanning Cytometry
  • Endophyte Compositions And The Methods For Improvement Of Plant Traits
  • Agricultural Endophyte-Plant Compositions, And Methods Of Use
  • Value Network
  • Method For Propagating Microorganisms Within Plant Bioreactors And Stably Storing Microorganisms Within Agricultural Seeds
  • Agricultural Endophyte-Plant Compositions, And Methods Of Use
  • Plant-Endophyte Combinations And Uses Therefor
  • Method For The Extraction Of Components Made From Organic Material
  • Computer Systems And Methods For Identifying Genes And Determining Pathways Associated With Traits
  • Seed-Origin Endophyte Populations, Compositions, And Methods Of Use
  • Method Of Classifying Protein/Compound Pairs
  • Process For Extracting Constituents From Organic Material
  • Computer Systems And Methods For Identifying Surrogate Markers
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Method For Propagating Microorganisms Within Plant Bioreactors And Stably Storing Microorganisms Within Agricultural Seeds
  • Seed Endophytes Across Cultivars And Species, Associated Compositions, And Methods Of Use Thereof
  • Isolated Complex Endophyte Compositions And Methods For Improved Plant Traits
  • Genetically Modified Plant Comprising Transcription Factor Sequences For Enhancing Efficacy Of Exogenous Gene Expression
  • Extracting Constituents From Freeze-Dried Organic Material With A Polar Phase Comprising A Polar Solvent Or Solvent Mixture To Form Extract A And Extract B; Contacting Extract B With An Alcohol And A Volatile Acid For Esterification/Transesterification; Combining Extract A And Extract B, Isolating
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Endophytic Microbial Symbionts In Plant Prenatal Care
  • Fungal Endophytes For Improved Crop Yields And Protection From Pests
  • Median Filter For Liquid Chromatography-Mass Spectrometry Data
  • Method For Extraction And Analysis Of Contents Made From Organic Material
  • Nucleic Acid Molecules Encoding Wrinkled1-Like Polypeptides And Methods Of Use In Plants
  • Prediction Of Phenotypes And Traits Based On The Metabolome
  • Modulated Nutritional Quality Traits In Seeds
  • Isolated Complex Endophyte Compositions And Methods For Improved Plant Traits
  • Endophytic Microbial Symbionts In Plant Prenatal Care
  • Method For Analysing Metabolites
  • Designed Complex Endophyte Compositions And Methods For Improved Plant Traits
  • Method Of Analyzing Differential Expression Of Proteins In Proteomes By Mass Spectrometry
  • Polychronic Laser Scanning System And Method Of Use
  • Fungal Endophytes For Improved Crop Yields And Protection From Pests
  • Modulated Nutritional Quality Traits In Seeds
  • Biomarkers For Diagnosing Multiple Sclerosis, And Methods Thereof
  • Methods For The Diagnosis Of Dementia And Other Neurological Disorders
  • Computer Systems And Methods For Subdividing A Complex Disease Into Component Diseases
  • Seed-Origin Endophyte Populations, Compositions, And Methods Of Use
  • Process For Decreasing Verbascose In A Plant By Expression Of A Chloroplast-Targeted Fimd Protein
  • Endophytic Microbial Symbionts In Plant Prenatal Care
  • Machine Learning In Agricultural Planting, Growing, And Harvesting Contexts
  • Using Solid Phase And Liquid Phase Extraction To Identify And Characterize Metabolites In Biological Fluids; Targeted Metabolomics
  • Methods And Systems For Analyzing Complex Biological Systems
  • Fungal Endophytes For Improved Crop Yields And Protection From Pests
  • Endophytic Microbial Symbionts In Plant Prenatal Care
  • Streptomyces Endophyte Compositions And Methods For Improved Agronomic Traits In Plants
  • Plant-Endophyte Combinations And Uses Therefor
  • Means And Methods For Diagnosing And Monitoring Heart Failure In A Subject
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Endophyte Compositions And Methods For Improvement Of Plant Traits
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Plant-Endophyte Combinations And Uses Therefor
  • Designed Complex Endophyte Compositions And Methods For Improved Plant Traits
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Prediction Of Phenotypes And Traits Based On The Metabolome
  • Endophytic Microbial Symbionts In Plant Prenatal Care
  • Method For The Extraction Of Components Made From Organic Material
  • Front End
  • Methods Of Use Of Seed-Origin Endophyte Populations
  • Chemometric Analysis Which Utilizes Free Proline As A Diagnostic And Prognostic Indicator Of Conditions Associated With Low Bone Mineral Density; Osteoporosis
  • Method For Analysing Metabolites
  • Computer Systems And Methods For Providing Health Care
  • Inoculants And Methods For Use Thereof
  • Plants Containing Beneficial Endophytes
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/81137

    DOI

    http://dx.doi.org/10.1038/81137

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045090002

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11062433


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gas Chromatography-Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Extracts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiehn", 
            "givenName": "Oliver", 
            "id": "sg:person.0615142477.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615142477.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metanomics GmbH & Co KGaA, Tegeler Weg 33, 10589, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Metanomics GmbH & Co KGaA, Tegeler Weg 33, 10589, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopka", 
            "givenName": "Joachim", 
            "id": "sg:person.0633132075.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "D\u00f6rmann", 
            "givenName": "Peter", 
            "id": "sg:person.01322224227.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322224227.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Altmann", 
            "givenName": "Thomas", 
            "id": "sg:person.01057415265.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057415265.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metanomics GmbH & Co KGaA, Tegeler Weg 33, 10589, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Metanomics GmbH & Co KGaA, Tegeler Weg 33, 10589, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trethewey", 
            "givenName": "Richard N.", 
            "id": "sg:person.01014227045.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014227045.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Willmitzer", 
            "givenName": "Lothar", 
            "id": "sg:person.0102633444.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0102633444.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s001090050290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002324275", 
              "https://doi.org/10.1007/s001090050290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029022565", 
              "https://doi.org/10.1038/13690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-6928-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109706112", 
              "https://doi.org/10.1007/978-1-4899-6928-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1044-0305(99)00104-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014121518", 
              "https://doi.org/10.1016/s1044-0305(99)00104-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-11", 
        "datePublishedReg": "2000-11-01", 
        "description": "Multiparallel analyses of mRNA and proteins are central to today's functional genomics initiatives. We describe here the use of metabolite profiling as a new tool for a comparative display of gene function. It has the potential not only to provide deeper insight into complex regulatory processes but also to determine phenotype directly. Using gas chromatography/mass spectrometry (GC/MS), we automatically quantified 326 distinct compounds from Arabidopsis thaliana leaf extracts. It was possible to assign a chemical structure to approximately half of these compounds. Comparison of four Arabidopsis  genotypes (two homozygous ecotypes and a mutant of each ecotype) showed that each genotype possesses a distinct metabolic profile. Data mining tools such as principal component analysis enabled the assignment of \u201cmetabolic phenotypes\u201d using these large data sets. The metabolic phenotypes of the two ecotypes were more divergent than were the metabolic phenotypes of the single-loci mutant and their parental ecotypes. These results demonstrate the use of metabolite profiling as a tool to significantly extend and enhance the power of existing functional genomics approaches.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/81137", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "functional genomics initiatives", 
          "metabolite profiling", 
          "plant functional genomics", 
          "metabolic phenotype", 
          "functional genomics approach", 
          "complex regulatory processes", 
          "single locus mutants", 
          "functional genomics", 
          "genomic approaches", 
          "parental ecotypes", 
          "gene function", 
          "genomics initiatives", 
          "multiparallel analysis", 
          "distinct metabolic profiles", 
          "regulatory processes", 
          "phenotype", 
          "ecotypes", 
          "profiling", 
          "distinct compounds", 
          "comparative display", 
          "genotypes", 
          "mass spectrometry", 
          "genomics", 
          "mutants", 
          "metabolic profile", 
          "new tool", 
          "protein", 
          "mRNA", 
          "deeper insight", 
          "leaf extract", 
          "principal component analysis", 
          "data mining tools", 
          "insights", 
          "mining tools", 
          "chromatography/mass spectrometry", 
          "chemical structure", 
          "large data sets", 
          "component analysis", 
          "compounds", 
          "gas chromatography/mass spectrometry", 
          "extract", 
          "spectrometry", 
          "function", 
          "analysis", 
          "data sets", 
          "tool", 
          "structure", 
          "potential", 
          "profile", 
          "process", 
          "half", 
          "assignment", 
          "display", 
          "use", 
          "comparison", 
          "set", 
          "results", 
          "approach", 
          "initiatives", 
          "power"
        ], 
        "name": "Metabolite profiling for plant functional genomics", 
        "pagination": "1157-1161", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045090002"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/81137"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11062433"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/81137", 
          "https://app.dimensions.ai/details/publication/pub.1045090002"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_330.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/81137"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/81137'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/81137'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/81137'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/81137'


     

    This table displays all metadata directly associated to this object as RDF triples.

    223 TRIPLES      21 PREDICATES      102 URIs      90 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/81137 schema:about N010c7b2b19ed4838bb34878c348eca1f
    2 N02b936f8c71a43c5bd12ebe425416209
    3 N11fd7f5ac1184fb2b8358c7c9a27a151
    4 N30c0c6a98bfe4f2d9e14d5ec9072deb7
    5 N3d4df218a2e947eaa69c1ca29bd5c9c2
    6 N4dc57f89d26a47848e87fbb2d3bfb98d
    7 N4feb75bccce74cf0b021ee5b3488d1ed
    8 N5185da1888114cb78534bd5027839483
    9 N6e7b1fdd8fb044e3b6c9d40a649b9c63
    10 Nbc264faa8b754156982e952506beabb0
    11 Nc67a56893fa940b1a64cc8a323ab77ab
    12 Ncd4c90fe25aa41ff9e5e565349dc6c69
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N171753460b094b99be050cbb53503d71
    16 schema:citation sg:pub.10.1007/978-1-4899-6928-6
    17 sg:pub.10.1007/s001090050290
    18 sg:pub.10.1016/s1044-0305(99)00104-x
    19 sg:pub.10.1038/13690
    20 schema:datePublished 2000-11
    21 schema:datePublishedReg 2000-11-01
    22 schema:description Multiparallel analyses of mRNA and proteins are central to today's functional genomics initiatives. We describe here the use of metabolite profiling as a new tool for a comparative display of gene function. It has the potential not only to provide deeper insight into complex regulatory processes but also to determine phenotype directly. Using gas chromatography/mass spectrometry (GC/MS), we automatically quantified 326 distinct compounds from Arabidopsis thaliana leaf extracts. It was possible to assign a chemical structure to approximately half of these compounds. Comparison of four Arabidopsis genotypes (two homozygous ecotypes and a mutant of each ecotype) showed that each genotype possesses a distinct metabolic profile. Data mining tools such as principal component analysis enabled the assignment of “metabolic phenotypes” using these large data sets. The metabolic phenotypes of the two ecotypes were more divergent than were the metabolic phenotypes of the single-loci mutant and their parental ecotypes. These results demonstrate the use of metabolite profiling as a tool to significantly extend and enhance the power of existing functional genomics approaches.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N047baeb4974f432fb1cae01104585c16
    26 Nbb53c4d6d4a7422b90212a4a2ea56dfe
    27 sg:journal.1115214
    28 schema:keywords analysis
    29 approach
    30 assignment
    31 chemical structure
    32 chromatography/mass spectrometry
    33 comparative display
    34 comparison
    35 complex regulatory processes
    36 component analysis
    37 compounds
    38 data mining tools
    39 data sets
    40 deeper insight
    41 display
    42 distinct compounds
    43 distinct metabolic profiles
    44 ecotypes
    45 extract
    46 function
    47 functional genomics
    48 functional genomics approach
    49 functional genomics initiatives
    50 gas chromatography/mass spectrometry
    51 gene function
    52 genomic approaches
    53 genomics
    54 genomics initiatives
    55 genotypes
    56 half
    57 initiatives
    58 insights
    59 large data sets
    60 leaf extract
    61 mRNA
    62 mass spectrometry
    63 metabolic phenotype
    64 metabolic profile
    65 metabolite profiling
    66 mining tools
    67 multiparallel analysis
    68 mutants
    69 new tool
    70 parental ecotypes
    71 phenotype
    72 plant functional genomics
    73 potential
    74 power
    75 principal component analysis
    76 process
    77 profile
    78 profiling
    79 protein
    80 regulatory processes
    81 results
    82 set
    83 single locus mutants
    84 spectrometry
    85 structure
    86 tool
    87 use
    88 schema:name Metabolite profiling for plant functional genomics
    89 schema:pagination 1157-1161
    90 schema:productId N612246dc27b0497ea95961a82144cbaf
    91 N909353ef39ae4b19ac87989457c579d4
    92 Neec2727c808c418abd373ae9f729e659
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090002
    94 https://doi.org/10.1038/81137
    95 schema:sdDatePublished 2022-08-04T16:53
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nb14266afea6f44fca8e9694974fe1652
    98 schema:url https://doi.org/10.1038/81137
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N010c7b2b19ed4838bb34878c348eca1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Gas Chromatography-Mass Spectrometry
    104 rdf:type schema:DefinedTerm
    105 N02b936f8c71a43c5bd12ebe425416209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Plant Extracts
    107 rdf:type schema:DefinedTerm
    108 N047baeb4974f432fb1cae01104585c16 schema:issueNumber 11
    109 rdf:type schema:PublicationIssue
    110 N11fd7f5ac1184fb2b8358c7c9a27a151 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Genome, Plant
    112 rdf:type schema:DefinedTerm
    113 N171753460b094b99be050cbb53503d71 rdf:first sg:person.0615142477.79
    114 rdf:rest Nf9357495a03c4ce8951744ca3e64f1f8
    115 N1ff62fffb9ca45c6b16ae2470821319b rdf:first sg:person.01057415265.33
    116 rdf:rest Ncb0db48417d84da9ac8cda142a1e9724
    117 N30c0c6a98bfe4f2d9e14d5ec9072deb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name RNA, Messenger
    119 rdf:type schema:DefinedTerm
    120 N38eb89e81fd44670b9e66ee708663eed rdf:first sg:person.0102633444.26
    121 rdf:rest rdf:nil
    122 N3d4df218a2e947eaa69c1ca29bd5c9c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Databases, Factual
    124 rdf:type schema:DefinedTerm
    125 N4dc57f89d26a47848e87fbb2d3bfb98d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Cluster Analysis
    127 rdf:type schema:DefinedTerm
    128 N4feb75bccce74cf0b021ee5b3488d1ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Oligonucleotide Array Sequence Analysis
    130 rdf:type schema:DefinedTerm
    131 N5185da1888114cb78534bd5027839483 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Arabidopsis
    133 rdf:type schema:DefinedTerm
    134 N612246dc27b0497ea95961a82144cbaf schema:name doi
    135 schema:value 10.1038/81137
    136 rdf:type schema:PropertyValue
    137 N6e7b1fdd8fb044e3b6c9d40a649b9c63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Genotype
    139 rdf:type schema:DefinedTerm
    140 N909353ef39ae4b19ac87989457c579d4 schema:name dimensions_id
    141 schema:value pub.1045090002
    142 rdf:type schema:PropertyValue
    143 Nb14266afea6f44fca8e9694974fe1652 schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 Nbb53c4d6d4a7422b90212a4a2ea56dfe schema:volumeNumber 18
    146 rdf:type schema:PublicationVolume
    147 Nbc264faa8b754156982e952506beabb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Metabolism
    149 rdf:type schema:DefinedTerm
    150 Nc67a56893fa940b1a64cc8a323ab77ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Phenotype
    152 rdf:type schema:DefinedTerm
    153 Ncb0db48417d84da9ac8cda142a1e9724 rdf:first sg:person.01014227045.19
    154 rdf:rest N38eb89e81fd44670b9e66ee708663eed
    155 Ncd4c90fe25aa41ff9e5e565349dc6c69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Genetic Techniques
    157 rdf:type schema:DefinedTerm
    158 Neec2727c808c418abd373ae9f729e659 schema:name pubmed_id
    159 schema:value 11062433
    160 rdf:type schema:PropertyValue
    161 Nf349f428d0084a26a6b1fcc0ed314d1d rdf:first sg:person.01322224227.03
    162 rdf:rest N1ff62fffb9ca45c6b16ae2470821319b
    163 Nf9357495a03c4ce8951744ca3e64f1f8 rdf:first sg:person.0633132075.84
    164 rdf:rest Nf349f428d0084a26a6b1fcc0ed314d1d
    165 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Biological Sciences
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Genetics
    170 rdf:type schema:DefinedTerm
    171 sg:journal.1115214 schema:issn 1087-0156
    172 1546-1696
    173 schema:name Nature Biotechnology
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.01014227045.19 schema:affiliation grid-institutes:None
    177 schema:familyName Trethewey
    178 schema:givenName Richard N.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014227045.19
    180 rdf:type schema:Person
    181 sg:person.0102633444.26 schema:affiliation grid-institutes:grid.418390.7
    182 schema:familyName Willmitzer
    183 schema:givenName Lothar
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0102633444.26
    185 rdf:type schema:Person
    186 sg:person.01057415265.33 schema:affiliation grid-institutes:grid.418390.7
    187 schema:familyName Altmann
    188 schema:givenName Thomas
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057415265.33
    190 rdf:type schema:Person
    191 sg:person.01322224227.03 schema:affiliation grid-institutes:grid.418390.7
    192 schema:familyName Dörmann
    193 schema:givenName Peter
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322224227.03
    195 rdf:type schema:Person
    196 sg:person.0615142477.79 schema:affiliation grid-institutes:grid.418390.7
    197 schema:familyName Fiehn
    198 schema:givenName Oliver
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615142477.79
    200 rdf:type schema:Person
    201 sg:person.0633132075.84 schema:affiliation grid-institutes:None
    202 schema:familyName Kopka
    203 schema:givenName Joachim
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84
    205 rdf:type schema:Person
    206 sg:pub.10.1007/978-1-4899-6928-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109706112
    207 https://doi.org/10.1007/978-1-4899-6928-6
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s001090050290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002324275
    210 https://doi.org/10.1007/s001090050290
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1016/s1044-0305(99)00104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014121518
    213 https://doi.org/10.1016/s1044-0305(99)00104-x
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    216 https://doi.org/10.1038/13690
    217 rdf:type schema:CreativeWork
    218 grid-institutes:None schema:alternateName Metanomics GmbH & Co KGaA, Tegeler Weg 33, 10589, Berlin, Germany
    219 schema:name Metanomics GmbH & Co KGaA, Tegeler Weg 33, 10589, Berlin, Germany
    220 rdf:type schema:Organization
    221 grid-institutes:grid.418390.7 schema:alternateName Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany
    222 schema:name Max Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany
    223 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...