Two exposed amino acid residues confer thermostability on a cold shock protein View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-05

AUTHORS

Dieter Perl, Uwe Mueller, Udo Heinemann, Franz X. Schmid

ABSTRACT

Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol−1 at 70 °C). 11.5 kJ mol−1 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol−1 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein. More... »

PAGES

380-383

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/75151

DOI

http://dx.doi.org/10.1038/75151

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013031441

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10802734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Substitution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacillus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacillus subtilis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Circular Dichroism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heat-Shock Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen Bonding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Denaturation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Secondary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Static Electricity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biochemisches Laboratorium, Universit\u00e4t Bayreuth, D-95440, Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Biochemisches Laboratorium, Universit\u00e4t Bayreuth, D-95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perl", 
        "givenName": "Dieter", 
        "id": "sg:person.01223057353.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223057353.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Chemie \u2013 Kristallographie, Freie Universit\u00e4t Berlin, Takustr. 6, D-14195, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Forschungsgruppe Kristallographie, Max-Delbr\u00fcck-Centrum f\u00fcr Molekulare Medizin, Robert-Roessle-Str. 10, D-13125, Berlin, Germany", 
            "Institut f\u00fcr Chemie \u2013 Kristallographie, Freie Universit\u00e4t Berlin, Takustr. 6, D-14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "Uwe", 
        "id": "sg:person.01007370610.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007370610.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Chemie \u2013 Kristallographie, Freie Universit\u00e4t Berlin, Takustr. 6, D-14195, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Forschungsgruppe Kristallographie, Max-Delbr\u00fcck-Centrum f\u00fcr Molekulare Medizin, Robert-Roessle-Str. 10, D-13125, Berlin, Germany", 
            "Institut f\u00fcr Chemie \u2013 Kristallographie, Freie Universit\u00e4t Berlin, Takustr. 6, D-14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heinemann", 
        "givenName": "Udo", 
        "id": "sg:person.01000563275.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000563275.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biochemisches Laboratorium, Universit\u00e4t Bayreuth, D-95440, Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Biochemisches Laboratorium, Universit\u00e4t Bayreuth, D-95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmid", 
        "givenName": "Franz X.", 
        "id": "sg:person.01142574422.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142574422.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt1098-955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052397074", 
          "https://doi.org/10.1038/nbt1098-955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/364164a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046167867", 
          "https://doi.org/10.1038/364164a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0398-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010068632", 
          "https://doi.org/10.1038/nsb0398-229"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-05", 
    "datePublishedReg": "2000-05-01", 
    "description": "Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol\u22121 at 70 \u00b0C). 11.5 kJ mol\u22121 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol\u22121 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/75151", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295033", 
        "issn": [
          "1545-9993", 
          "2331-365X"
        ], 
        "name": "Nature Structural & Molecular Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "cold shock proteins", 
      "shock proteins", 
      "surface-exposed residues", 
      "thermophilic origin", 
      "thermophilic organisms", 
      "Leu-66", 
      "thermophilic proteins", 
      "confer thermostability", 
      "protein thermostability", 
      "systematic mutagenesis", 
      "Arg-3", 
      "mesophilic proteins", 
      "carboxy terminus", 
      "Glu residues", 
      "molecular level", 
      "amino acids", 
      "protein", 
      "surface residues", 
      "residues", 
      "powerful approach", 
      "thermostability", 
      "thermostable form", 
      "hydrophobic interactions", 
      "mutagenesis", 
      "terminus", 
      "organisms", 
      "position 3", 
      "mesophilic", 
      "sequence", 
      "Leu", 
      "Arg", 
      "electrostatic contribution", 
      "acid", 
      "exceptional stability", 
      "interaction", 
      "origin", 
      "variation", 
      "pairs", 
      "levels", 
      "stability", 
      "form", 
      "increase", 
      "position", 
      "contribution", 
      "approach", 
      "kJ"
    ], 
    "name": "Two exposed amino acid residues confer thermostability on a cold shock protein", 
    "pagination": "380-383", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013031441"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/75151"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10802734"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/75151", 
      "https://app.dimensions.ai/details/publication/pub.1013031441"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_334.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/75151"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/75151'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/75151'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/75151'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/75151'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      22 PREDICATES      93 URIs      82 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/75151 schema:about N04c21edb45724a1ea23803ae249a189c
2 N0bb5cb4445974cbcb791b90275aa6ced
3 N0e5277ffca4d45d0b8dae8f44183bc9f
4 N4559f0e986cf4511aa422831bb13e199
5 N47dde9d9bca142a6b5af373af53839ca
6 N4b08c936343449a0a10c8288f636945f
7 N4dc30dcd271a46c88c40c489e1b6074e
8 N64a03dc52a92452bb419042a91454b2d
9 N702cedb76e144e8e86f14f47018bd4ca
10 N71e64121d4384e46a0afe4d156a16b93
11 N742a69f412604d86915a3932eb3669d1
12 N86c670ae864a4220a33a4d08185ada50
13 N8a9d41dac6ae422bac01aea7e199d6b0
14 Nb9d01cbbf19346848dd67584a43745a9
15 Nba1b9bfc56ea431b8dc58de6e20d109e
16 Nd5c40b9adf4f4c3eae75e13217463638
17 Nd63a321c8cf840fa9b3513ca7c298443
18 anzsrc-for:06
19 anzsrc-for:0601
20 schema:author Na175778f71d240ad819ad957576aff9b
21 schema:citation sg:pub.10.1038/364164a0
22 sg:pub.10.1038/nbt1098-955
23 sg:pub.10.1038/nsb0398-229
24 schema:datePublished 2000-05
25 schema:datePublishedReg 2000-05-01
26 schema:description Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol−1 at 70 °C). 11.5 kJ mol−1 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol−1 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N3091db89e1c443a38e54244f35dd7f6b
31 N39cbfe39e9eb4519bce4e11e58d6cd18
32 sg:journal.1295033
33 schema:keywords Arg
34 Arg-3
35 Glu residues
36 Leu
37 Leu-66
38 acid
39 amino acids
40 approach
41 carboxy terminus
42 cold shock proteins
43 confer thermostability
44 contribution
45 electrostatic contribution
46 exceptional stability
47 form
48 hydrophobic interactions
49 increase
50 interaction
51 kJ
52 levels
53 mesophilic
54 mesophilic proteins
55 molecular level
56 mutagenesis
57 organisms
58 origin
59 pairs
60 position
61 position 3
62 powerful approach
63 protein
64 protein thermostability
65 residues
66 sequence
67 shock proteins
68 stability
69 surface residues
70 surface-exposed residues
71 systematic mutagenesis
72 terminus
73 thermophilic organisms
74 thermophilic origin
75 thermophilic proteins
76 thermostability
77 thermostable form
78 variation
79 schema:name Two exposed amino acid residues confer thermostability on a cold shock protein
80 schema:pagination 380-383
81 schema:productId N1d79cb6a76d94840915bcd7c82cdc8b5
82 Nb57fa422a208429e83882f5f9eec23f8
83 Nd1f20faf88a54efe946b4e2e434bedc6
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013031441
85 https://doi.org/10.1038/75151
86 schema:sdDatePublished 2021-12-01T19:13
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N8bc7ee6de4ba495eacc0e4f27be46652
89 schema:url https://doi.org/10.1038/75151
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N04c21edb45724a1ea23803ae249a189c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Molecular Sequence Data
95 rdf:type schema:DefinedTerm
96 N0bb5cb4445974cbcb791b90275aa6ced schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Protein Denaturation
98 rdf:type schema:DefinedTerm
99 N0e5277ffca4d45d0b8dae8f44183bc9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Circular Dichroism
101 rdf:type schema:DefinedTerm
102 N1d79cb6a76d94840915bcd7c82cdc8b5 schema:name doi
103 schema:value 10.1038/75151
104 rdf:type schema:PropertyValue
105 N23922809a0f24853a12d92b99f141f24 rdf:first sg:person.01142574422.31
106 rdf:rest rdf:nil
107 N3091db89e1c443a38e54244f35dd7f6b schema:volumeNumber 7
108 rdf:type schema:PublicationVolume
109 N39cbfe39e9eb4519bce4e11e58d6cd18 schema:issueNumber 5
110 rdf:type schema:PublicationIssue
111 N4559f0e986cf4511aa422831bb13e199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Bacterial Proteins
113 rdf:type schema:DefinedTerm
114 N47dde9d9bca142a6b5af373af53839ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Bacillus subtilis
116 rdf:type schema:DefinedTerm
117 N4b08c936343449a0a10c8288f636945f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Amino Acid Sequence
119 rdf:type schema:DefinedTerm
120 N4dc30dcd271a46c88c40c489e1b6074e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Thermodynamics
122 rdf:type schema:DefinedTerm
123 N5f5f9b09dbee4efe8c827e2311b25c0a rdf:first sg:person.01007370610.99
124 rdf:rest N95ad787d8db948b692da625666e0c32e
125 N64a03dc52a92452bb419042a91454b2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Static Electricity
127 rdf:type schema:DefinedTerm
128 N702cedb76e144e8e86f14f47018bd4ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Bacillus
130 rdf:type schema:DefinedTerm
131 N71e64121d4384e46a0afe4d156a16b93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Hydrogen Bonding
133 rdf:type schema:DefinedTerm
134 N742a69f412604d86915a3932eb3669d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Protein Structure, Secondary
136 rdf:type schema:DefinedTerm
137 N86c670ae864a4220a33a4d08185ada50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Temperature
139 rdf:type schema:DefinedTerm
140 N8a9d41dac6ae422bac01aea7e199d6b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Heat-Shock Proteins
142 rdf:type schema:DefinedTerm
143 N8bc7ee6de4ba495eacc0e4f27be46652 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 N95ad787d8db948b692da625666e0c32e rdf:first sg:person.01000563275.06
146 rdf:rest N23922809a0f24853a12d92b99f141f24
147 Na175778f71d240ad819ad957576aff9b rdf:first sg:person.01223057353.83
148 rdf:rest N5f5f9b09dbee4efe8c827e2311b25c0a
149 Nb57fa422a208429e83882f5f9eec23f8 schema:name pubmed_id
150 schema:value 10802734
151 rdf:type schema:PropertyValue
152 Nb9d01cbbf19346848dd67584a43745a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Sequence Alignment
154 rdf:type schema:DefinedTerm
155 Nba1b9bfc56ea431b8dc58de6e20d109e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Models, Molecular
157 rdf:type schema:DefinedTerm
158 Nd1f20faf88a54efe946b4e2e434bedc6 schema:name dimensions_id
159 schema:value pub.1013031441
160 rdf:type schema:PropertyValue
161 Nd5c40b9adf4f4c3eae75e13217463638 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Mutation
163 rdf:type schema:DefinedTerm
164 Nd63a321c8cf840fa9b3513ca7c298443 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Amino Acid Substitution
166 rdf:type schema:DefinedTerm
167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biological Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biochemistry and Cell Biology
172 rdf:type schema:DefinedTerm
173 sg:journal.1295033 schema:issn 1545-9993
174 2331-365X
175 schema:name Nature Structural & Molecular Biology
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01000563275.06 schema:affiliation grid-institutes:grid.14095.39
179 schema:familyName Heinemann
180 schema:givenName Udo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000563275.06
182 rdf:type schema:Person
183 sg:person.01007370610.99 schema:affiliation grid-institutes:grid.14095.39
184 schema:familyName Mueller
185 schema:givenName Uwe
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007370610.99
187 rdf:type schema:Person
188 sg:person.01142574422.31 schema:affiliation grid-institutes:grid.7384.8
189 schema:familyName Schmid
190 schema:givenName Franz X.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142574422.31
192 rdf:type schema:Person
193 sg:person.01223057353.83 schema:affiliation grid-institutes:grid.7384.8
194 schema:familyName Perl
195 schema:givenName Dieter
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223057353.83
197 rdf:type schema:Person
198 sg:pub.10.1038/364164a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046167867
199 https://doi.org/10.1038/364164a0
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nbt1098-955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052397074
202 https://doi.org/10.1038/nbt1098-955
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nsb0398-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010068632
205 https://doi.org/10.1038/nsb0398-229
206 rdf:type schema:CreativeWork
207 grid-institutes:grid.14095.39 schema:alternateName Institut für Chemie – Kristallographie, Freie Universität Berlin, Takustr. 6, D-14195, Berlin, Germany
208 schema:name Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Roessle-Str. 10, D-13125, Berlin, Germany
209 Institut für Chemie – Kristallographie, Freie Universität Berlin, Takustr. 6, D-14195, Berlin, Germany
210 rdf:type schema:Organization
211 grid-institutes:grid.7384.8 schema:alternateName Biochemisches Laboratorium, Universität Bayreuth, D-95440, Bayreuth, Germany
212 schema:name Biochemisches Laboratorium, Universität Bayreuth, D-95440, Bayreuth, Germany
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...