Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

O May, P T Nguyen, F H Arnold

ABSTRACT

Using directed evolution, we have improved the hydantoinase process for production of L-methionine (L-met) in Escherichia coli. This was accomplished by inverting the enantioselectivity and increasing the total activity of a key enzyme in a whole-cell catalyst. The selectivity of all known hydantoinases for D-5-(2-methylthioethyl)hydantoin (D-MTEH) over the L-enantiomer leads to the accumulation of intermediates and reduced productivity for the L-amino acid. We used random mutagenesis, saturation mutagenesis, and screening to convert the D-selective hydantoinase from Arthrobacter sp. DSM 9771 into an L-selective enzyme and increased its total activity fivefold. Whole E. coli cells expressing the evolved L-hydantoinase, an L-N-carbamoylase, and a hydantoin racemase produced 91 mM L-met from 100 mM D,L-MTEH in less than 2 h. The improved hydantoinase increased productivity fivefold for >90% conversion of the substrate. The accumulation of the unwanted intermediate D-carbamoyl-methionine was reduced fourfold compared to cells with the wild-type pathway. Highly D-selective hydantoinase mutants were also discovered. Enantioselective enzymes rapidly optimized by directed evolution and introduced into multienzyme pathways may lead to improved whole-cell catalysts for efficient production of chiral compounds. More... »

PAGES

317-320

References to SciGraph publications

  • 1999-02-26. Superior Biocatalysts by Directed Evolution in BIOCATALYSIS - FROM DISCOVERY TO APPLICATION
  • 1997. Optimizing industrial enzymes by directed evolution in NEW ENZYMES FOR ORGANIC SYNTHESIS
  • 1999-12. Exploring Nonnatural Evolutionary Pathways by Saturation Mutagenesis: Rapid Improvement of Protein Function in JOURNAL OF MOLECULAR EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/73773

    DOI

    http://dx.doi.org/10.1038/73773

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012230685

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10700149


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amidohydrolases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Directed Molecular Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methionine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Chemical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutagenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Peptide Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stereoisomerism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "California Institute of Technology, Division of Chemistry and Chemical Engineering 210-41, Pasadena, CA 91125, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "May", 
            "givenName": "O", 
            "type": "Person"
          }, 
          {
            "familyName": "Nguyen", 
            "givenName": "P T", 
            "type": "Person"
          }, 
          {
            "familyName": "Arnold", 
            "givenName": "F H", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/pl00006593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000413843", 
              "https://doi.org/10.1007/pl00006593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/16.1.355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010020624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1656(95)00193-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010511836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68116-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012263480", 
              "https://doi.org/10.1007/3-540-68116-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68116-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012263480", 
              "https://doi.org/10.1007/3-540-68116-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90120-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017120147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90120-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017120147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-1656(98)00005-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018748009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1995.tb19916.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025742631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1074-5521(98)90108-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026121706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2958.1996.761428.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028796260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2958.1996.761428.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028796260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-1656(98)00183-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029285032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0042-6822(60)90161-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030508849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.199728301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043746657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0103300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051886027", 
              "https://doi.org/10.1007/bfb0103300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cen-v076n038.p083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055365002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00389a064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055728602"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-03", 
        "datePublishedReg": "2000-03-01", 
        "description": "Using directed evolution, we have improved the hydantoinase process for production of L-methionine (L-met) in Escherichia coli. This was accomplished by inverting the enantioselectivity and increasing the total activity of a key enzyme in a whole-cell catalyst. The selectivity of all known hydantoinases for D-5-(2-methylthioethyl)hydantoin (D-MTEH) over the L-enantiomer leads to the accumulation of intermediates and reduced productivity for the L-amino acid. We used random mutagenesis, saturation mutagenesis, and screening to convert the D-selective hydantoinase from Arthrobacter sp. DSM 9771 into an L-selective enzyme and increased its total activity fivefold. Whole E. coli cells expressing the evolved L-hydantoinase, an L-N-carbamoylase, and a hydantoin racemase produced 91 mM L-met from 100 mM D,L-MTEH in less than 2 h. The improved hydantoinase increased productivity fivefold for >90% conversion of the substrate. The accumulation of the unwanted intermediate D-carbamoyl-methionine was reduced fourfold compared to cells with the wild-type pathway. Highly D-selective hydantoinase mutants were also discovered. Enantioselective enzymes rapidly optimized by directed evolution and introduced into multienzyme pathways may lead to improved whole-cell catalysts for efficient production of chiral compounds.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/73773", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine", 
        "pagination": "317-320", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3a454b0ac651008e7a744bcdbcf0d33f6b3f91a426f98503ecb54adaaf58cf7f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10700149"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/73773"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012230685"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/73773", 
          "https://app.dimensions.ai/details/publication/pub.1012230685"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nbt/journal/v18/n3/full/nbt0300_317.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/73773'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/73773'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/73773'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/73773'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/73773 schema:about N12d52f45d5374e7f9d5627f937fad193
    2 N2506689c46b54a59bcfb0df724b143cb
    3 N375938ed2b2e4879a482fa111c838fa0
    4 N3e11904b400e4eed94c78cd4ddf32f87
    5 N54f2ae6a5a4744fbb9aac9f789b22c7a
    6 N858eb68fcd78476c9a8651678ff64c0b
    7 N8695b855bcff4f94aa95dabd04cbf6fc
    8 Nb36144906dfc402f9d877595ea729146
    9 Ndf1bf5efc2da4fc6880adcf1c3858af6
    10 Nfaf9a2b0e8ce4016b393c00fedfcaee9
    11 anzsrc-for:06
    12 anzsrc-for:0601
    13 schema:author N8a73f3961eea48ea8a694ee41b706286
    14 schema:citation sg:pub.10.1007/3-540-68116-7_2
    15 sg:pub.10.1007/bfb0103300
    16 sg:pub.10.1007/pl00006593
    17 https://doi.org/10.1002/anie.199728301
    18 https://doi.org/10.1016/0042-6822(60)90161-6
    19 https://doi.org/10.1016/0168-1656(95)00193-x
    20 https://doi.org/10.1016/0378-1119(85)90120-9
    21 https://doi.org/10.1016/s0168-1656(98)00005-4
    22 https://doi.org/10.1016/s0168-1656(98)00183-7
    23 https://doi.org/10.1016/s1074-5521(98)90108-9
    24 https://doi.org/10.1021/cen-v076n038.p083
    25 https://doi.org/10.1021/ja00389a064
    26 https://doi.org/10.1046/j.1365-2958.1996.761428.x
    27 https://doi.org/10.1093/nar/16.1.355
    28 https://doi.org/10.1111/j.1749-6632.1995.tb19916.x
    29 schema:datePublished 2000-03
    30 schema:datePublishedReg 2000-03-01
    31 schema:description Using directed evolution, we have improved the hydantoinase process for production of L-methionine (L-met) in Escherichia coli. This was accomplished by inverting the enantioselectivity and increasing the total activity of a key enzyme in a whole-cell catalyst. The selectivity of all known hydantoinases for D-5-(2-methylthioethyl)hydantoin (D-MTEH) over the L-enantiomer leads to the accumulation of intermediates and reduced productivity for the L-amino acid. We used random mutagenesis, saturation mutagenesis, and screening to convert the D-selective hydantoinase from Arthrobacter sp. DSM 9771 into an L-selective enzyme and increased its total activity fivefold. Whole E. coli cells expressing the evolved L-hydantoinase, an L-N-carbamoylase, and a hydantoin racemase produced 91 mM L-met from 100 mM D,L-MTEH in less than 2 h. The improved hydantoinase increased productivity fivefold for >90% conversion of the substrate. The accumulation of the unwanted intermediate D-carbamoyl-methionine was reduced fourfold compared to cells with the wild-type pathway. Highly D-selective hydantoinase mutants were also discovered. Enantioselective enzymes rapidly optimized by directed evolution and introduced into multienzyme pathways may lead to improved whole-cell catalysts for efficient production of chiral compounds.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N8b9d5217eadd45238a2d7b2f4a44bd70
    36 Ne2779f3437ab4885a4992e9d7919dc82
    37 sg:journal.1115214
    38 schema:name Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine
    39 schema:pagination 317-320
    40 schema:productId N217c44d2bfd3496cbd8031031dea7fb2
    41 N3ceb7aa9706c4fbf9f1b6aa370e67d9b
    42 N698ccc766fa94aadbb0d288de9ebaab0
    43 N741bb2a6d561485c916f3aec42a086a0
    44 Nc6347056ee8b43ab96a70c46722c6b63
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012230685
    46 https://doi.org/10.1038/73773
    47 schema:sdDatePublished 2019-04-11T12:20
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N0a2c6bbf63c14b8a94575b54452be2f2
    50 schema:url http://www.nature.com/nbt/journal/v18/n3/full/nbt0300_317.html
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N0a2c6bbf63c14b8a94575b54452be2f2 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N0dc252edf16342c4a91f9197546e067a rdf:first N68fa31af2ae548fc87550f80e154f35e
    57 rdf:rest N4924e34624fa4f5fbe0abd685145529d
    58 N12d52f45d5374e7f9d5627f937fad193 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    59 schema:name Stereoisomerism
    60 rdf:type schema:DefinedTerm
    61 N217c44d2bfd3496cbd8031031dea7fb2 schema:name dimensions_id
    62 schema:value pub.1012230685
    63 rdf:type schema:PropertyValue
    64 N2506689c46b54a59bcfb0df724b143cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Mutagenesis
    66 rdf:type schema:DefinedTerm
    67 N375938ed2b2e4879a482fa111c838fa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Methionine
    69 rdf:type schema:DefinedTerm
    70 N3ceb7aa9706c4fbf9f1b6aa370e67d9b schema:name pubmed_id
    71 schema:value 10700149
    72 rdf:type schema:PropertyValue
    73 N3e11904b400e4eed94c78cd4ddf32f87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Time Factors
    75 rdf:type schema:DefinedTerm
    76 N4924e34624fa4f5fbe0abd685145529d rdf:first Nb58ef5c16a8445d4ac7c81cc5acc8c6d
    77 rdf:rest rdf:nil
    78 N54f2ae6a5a4744fbb9aac9f789b22c7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Amidohydrolases
    80 rdf:type schema:DefinedTerm
    81 N68fa31af2ae548fc87550f80e154f35e schema:familyName Nguyen
    82 schema:givenName P T
    83 rdf:type schema:Person
    84 N698ccc766fa94aadbb0d288de9ebaab0 schema:name doi
    85 schema:value 10.1038/73773
    86 rdf:type schema:PropertyValue
    87 N741bb2a6d561485c916f3aec42a086a0 schema:name nlm_unique_id
    88 schema:value 9604648
    89 rdf:type schema:PropertyValue
    90 N858eb68fcd78476c9a8651678ff64c0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Directed Molecular Evolution
    92 rdf:type schema:DefinedTerm
    93 N8695b855bcff4f94aa95dabd04cbf6fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Models, Chemical
    95 rdf:type schema:DefinedTerm
    96 N8a73f3961eea48ea8a694ee41b706286 rdf:first Nd5210936922a4aba9b8b2ce2d832c66d
    97 rdf:rest N0dc252edf16342c4a91f9197546e067a
    98 N8b9d5217eadd45238a2d7b2f4a44bd70 schema:issueNumber 3
    99 rdf:type schema:PublicationIssue
    100 Nb36144906dfc402f9d877595ea729146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Peptide Library
    102 rdf:type schema:DefinedTerm
    103 Nb58ef5c16a8445d4ac7c81cc5acc8c6d schema:familyName Arnold
    104 schema:givenName F H
    105 rdf:type schema:Person
    106 Nc6347056ee8b43ab96a70c46722c6b63 schema:name readcube_id
    107 schema:value 3a454b0ac651008e7a744bcdbcf0d33f6b3f91a426f98503ecb54adaaf58cf7f
    108 rdf:type schema:PropertyValue
    109 Nd5210936922a4aba9b8b2ce2d832c66d schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    110 schema:familyName May
    111 schema:givenName O
    112 rdf:type schema:Person
    113 Ndf1bf5efc2da4fc6880adcf1c3858af6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Escherichia coli
    115 rdf:type schema:DefinedTerm
    116 Ne2779f3437ab4885a4992e9d7919dc82 schema:volumeNumber 18
    117 rdf:type schema:PublicationVolume
    118 Nfaf9a2b0e8ce4016b393c00fedfcaee9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Polymerase Chain Reaction
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Biological Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Biochemistry and Cell Biology
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1115214 schema:issn 1087-0156
    128 1546-1696
    129 schema:name Nature Biotechnology
    130 rdf:type schema:Periodical
    131 sg:pub.10.1007/3-540-68116-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012263480
    132 https://doi.org/10.1007/3-540-68116-7_2
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bfb0103300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051886027
    135 https://doi.org/10.1007/bfb0103300
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/pl00006593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000413843
    138 https://doi.org/10.1007/pl00006593
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1002/anie.199728301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043746657
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/0042-6822(60)90161-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030508849
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/0168-1656(95)00193-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010511836
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/0378-1119(85)90120-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017120147
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/s0168-1656(98)00005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018748009
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/s0168-1656(98)00183-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029285032
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/s1074-5521(98)90108-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026121706
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1021/cen-v076n038.p083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055365002
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1021/ja00389a064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055728602
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1046/j.1365-2958.1996.761428.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028796260
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1093/nar/16.1.355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020624
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1111/j.1749-6632.1995.tb19916.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025742631
    163 rdf:type schema:CreativeWork
    164 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
    165 schema:name California Institute of Technology, Division of Chemistry and Chemical Engineering 210-41, Pasadena, CA 91125, USA.
    166 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...