Protein interaction maps for complete genomes based on gene fusion events View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-11

AUTHORS

Anton J. Enright, Ioannis Iliopoulos, Nikos C. Kyrpides, Christos A. Ouzounis

ABSTRACT

A large-scale effort to measure, detect and analyse protein-protein interactions using experimental methods is under way. These include biochemistry such as co-immunoprecipitation or crosslinking, molecular biology such as the two-hybrid system or phage display, and genetics such as unlinked noncomplementing mutant detection. Using the two-hybrid system, an international effort to analyse the complete yeast genome is in progress. Evidently, all these approaches are tedious, labour intensive and inaccurate. From a computational perspective, the question is how can we predict that two proteins interact from structure or sequence alone. Here we present a method that identifies gene-fusion events in complete genomes, solely based on sequence comparison. Because there must be selective pressure for certain genes to be fused over the course of evolution, we are able to predict functional associations of proteins. We show that 215 genes or proteins in the complete genomes of Escherichia coli, Haemophilus influenzae and Methanococcus jannaschii are involved in 64 unique fusion events. The approach is general, and can be applied even to genes of unknown function. More... »

PAGES

86

References to SciGraph publications

  • 1997-12. ThiD-TenA: A Gene Pair Fusion in Eukaryotes in JOURNAL OF MOLECULAR EVOLUTION
  • 1997-01. Conserved Clusters of Functionally Related Genes in Two Bacterial Genomes in JOURNAL OF MOLECULAR EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/47056

    DOI

    http://dx.doi.org/10.1038/47056

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029720868

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10573422


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artificial Gene Fusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Haemophilus influenzae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methanococcus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Two-Hybrid System Techniques", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Enright", 
            "givenName": "Anton J.", 
            "id": "sg:person.0765550040.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765550040.56"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Iliopoulos", 
            "givenName": "Ioannis", 
            "id": "sg:person.0776566454.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776566454.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "*Integrated Genomics Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kyrpides", 
            "givenName": "Nikos C.", 
            "id": "sg:person.01230412614.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412614.56"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Ouzounis", 
            "givenName": "Christos A.", 
            "id": "sg:person.0630313060.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630313060.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/pl00013145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006413497", 
              "https://doi.org/10.1007/pl00013145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1521-1878(199801)20:1<1::aid-bies2>3.0.co;2-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006685132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0968-0004(94)90019-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011169384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-0004(98)01274-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011500385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5428.751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013411081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013618994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.11.6239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016472818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-440x(98)80019-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017937673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/o89-094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020622696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.8.4285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022990732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.6.2896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023469671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/15.5.391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023546769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(96)66017-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023596106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024589839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(98)00044-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027714152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.1.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031587796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7799(98)01245-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032387049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340230413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034134178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340230413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034134178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(91)02032-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035742009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(88)81036-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038888706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048256009", 
              "https://doi.org/10.1007/pl00006122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0958-1669(95)80010-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051814787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.284.5422.1948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062565607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078342493", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078788684", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082474150", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1096/fasebj.8.15.8001737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082603368"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-11", 
        "datePublishedReg": "1999-11-01", 
        "description": "A large-scale effort to measure, detect and analyse protein-protein interactions using experimental methods is under way. These include biochemistry such as co-immunoprecipitation or crosslinking, molecular biology such as the two-hybrid system or phage display, and genetics such as unlinked noncomplementing mutant detection. Using the two-hybrid system, an international effort to analyse the complete yeast genome is in progress. Evidently, all these approaches are tedious, labour intensive and inaccurate. From a computational perspective, the question is how can we predict that two proteins interact from structure or sequence alone. Here we present a method that identifies gene-fusion events in complete genomes, solely based on sequence comparison. Because there must be selective pressure for certain genes to be fused over the course of evolution, we are able to predict functional associations of proteins. We show that 215 genes or proteins in the complete genomes of Escherichia coli, Haemophilus influenzae and Methanococcus jannaschii are involved in 64 unique fusion events. The approach is general, and can be applied even to genes of unknown function.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/47056", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6757", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "402"
          }
        ], 
        "name": "Protein interaction maps for complete genomes based on gene fusion events", 
        "pagination": "86", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8d95b28aed648152c69377599f4695c033638fbec3e1e8fa07cecae8bcc2097a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10573422"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/47056"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029720868"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/47056", 
          "https://app.dimensions.ai/details/publication/pub.1029720868"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87083_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/47056"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/47056'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/47056'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/47056'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/47056'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      64 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/47056 schema:about N266c2e073a7f4faaad0a999bbb4c860f
    2 N35ecbd0ab3514fe9858efa0657579717
    3 N4f24c234b08c4a33acba222524394b41
    4 N60d4d5abb9ef4dea96dcf28083af13ab
    5 N94aed7072ac14a2ab95f21cf122e14d1
    6 Nbfde5dcb17bf42d3a89bca31a5c002dc
    7 Nd6bd7f279dec4af2b6ddc6862d640f29
    8 Nf5490c24743f4433b0467e682d1e5cd9
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Nbbbbe5938a4d4316977e2c800a5dcf17
    12 schema:citation sg:pub.10.1007/pl00006122
    13 sg:pub.10.1007/pl00013145
    14 https://app.dimensions.ai/details/publication/pub.1078342493
    15 https://app.dimensions.ai/details/publication/pub.1078788684
    16 https://app.dimensions.ai/details/publication/pub.1082474150
    17 https://doi.org/10.1002/(sici)1521-1878(199801)20:1<1::aid-bies2>3.0.co;2-y
    18 https://doi.org/10.1002/prot.340230413
    19 https://doi.org/10.1016/0014-5793(88)81036-6
    20 https://doi.org/10.1016/0022-2836(81)90087-5
    21 https://doi.org/10.1016/0076-6879(91)02032-5
    22 https://doi.org/10.1016/0958-1669(95)80010-7
    23 https://doi.org/10.1016/0968-0004(94)90019-1
    24 https://doi.org/10.1016/s0022-2836(05)80360-2
    25 https://doi.org/10.1016/s0076-6879(96)66017-0
    26 https://doi.org/10.1016/s0167-7799(98)01245-1
    27 https://doi.org/10.1016/s0959-440x(98)80019-5
    28 https://doi.org/10.1016/s0968-0004(98)01274-2
    29 https://doi.org/10.1016/s0969-2126(98)00044-6
    30 https://doi.org/10.1073/pnas.93.1.13
    31 https://doi.org/10.1073/pnas.95.11.6239
    32 https://doi.org/10.1073/pnas.96.6.2896
    33 https://doi.org/10.1073/pnas.96.8.4285
    34 https://doi.org/10.1093/bioinformatics/15.5.391
    35 https://doi.org/10.1096/fasebj.8.15.8001737
    36 https://doi.org/10.1126/science.284.5422.1948
    37 https://doi.org/10.1126/science.285.5428.751
    38 https://doi.org/10.1139/o89-094
    39 schema:datePublished 1999-11
    40 schema:datePublishedReg 1999-11-01
    41 schema:description A large-scale effort to measure, detect and analyse protein-protein interactions using experimental methods is under way. These include biochemistry such as co-immunoprecipitation or crosslinking, molecular biology such as the two-hybrid system or phage display, and genetics such as unlinked noncomplementing mutant detection. Using the two-hybrid system, an international effort to analyse the complete yeast genome is in progress. Evidently, all these approaches are tedious, labour intensive and inaccurate. From a computational perspective, the question is how can we predict that two proteins interact from structure or sequence alone. Here we present a method that identifies gene-fusion events in complete genomes, solely based on sequence comparison. Because there must be selective pressure for certain genes to be fused over the course of evolution, we are able to predict functional associations of proteins. We show that 215 genes or proteins in the complete genomes of Escherichia coli, Haemophilus influenzae and Methanococcus jannaschii are involved in 64 unique fusion events. The approach is general, and can be applied even to genes of unknown function.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N55b378e4885041c58398c4643b94f90c
    46 Na032fce027ac4a9ca9d341f5477f45bc
    47 sg:journal.1018957
    48 schema:name Protein interaction maps for complete genomes based on gene fusion events
    49 schema:pagination 86
    50 schema:productId N3aaaaa75d5224975bdacee40f48a6ac1
    51 N4ef093726a8048069b75ddf19ae284c3
    52 N8cceecf268bd4fdc9877290f9cc05dc1
    53 Ndf8bf2905d5c42868923cec050b6a0a8
    54 Nfaca1ee8fe3d4e67b65fac5395911144
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029720868
    56 https://doi.org/10.1038/47056
    57 schema:sdDatePublished 2019-04-11T12:22
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N756ded3e14244cb78b000cf4720f1b35
    60 schema:url https://www.nature.com/articles/47056
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N266c2e073a7f4faaad0a999bbb4c860f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Protein Binding
    66 rdf:type schema:DefinedTerm
    67 N2700967350aa49138f541d3ae9673cd8 rdf:first sg:person.0630313060.74
    68 rdf:rest rdf:nil
    69 N35ecbd0ab3514fe9858efa0657579717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Escherichia coli
    71 rdf:type schema:DefinedTerm
    72 N3aaaaa75d5224975bdacee40f48a6ac1 schema:name doi
    73 schema:value 10.1038/47056
    74 rdf:type schema:PropertyValue
    75 N3ef9a3d0eef9407c9aa97f6f27ee73a8 rdf:first sg:person.01230412614.56
    76 rdf:rest N2700967350aa49138f541d3ae9673cd8
    77 N4ef093726a8048069b75ddf19ae284c3 schema:name dimensions_id
    78 schema:value pub.1029720868
    79 rdf:type schema:PropertyValue
    80 N4f24c234b08c4a33acba222524394b41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Two-Hybrid System Techniques
    82 rdf:type schema:DefinedTerm
    83 N55b378e4885041c58398c4643b94f90c schema:issueNumber 6757
    84 rdf:type schema:PublicationIssue
    85 N60d4d5abb9ef4dea96dcf28083af13ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Haemophilus influenzae
    87 rdf:type schema:DefinedTerm
    88 N61530214222243fc9825d3251efacd06 schema:name *Integrated Genomics Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, USA
    89 rdf:type schema:Organization
    90 N756ded3e14244cb78b000cf4720f1b35 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N8cceecf268bd4fdc9877290f9cc05dc1 schema:name pubmed_id
    93 schema:value 10573422
    94 rdf:type schema:PropertyValue
    95 N94aed7072ac14a2ab95f21cf122e14d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Methanococcus
    97 rdf:type schema:DefinedTerm
    98 Na032fce027ac4a9ca9d341f5477f45bc schema:volumeNumber 402
    99 rdf:type schema:PublicationVolume
    100 Nbbbbe5938a4d4316977e2c800a5dcf17 rdf:first sg:person.0765550040.56
    101 rdf:rest Nfab6122b28844b6f838608017bc9088b
    102 Nbfde5dcb17bf42d3a89bca31a5c002dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Bacterial Proteins
    104 rdf:type schema:DefinedTerm
    105 Nd6bd7f279dec4af2b6ddc6862d640f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Genome, Bacterial
    107 rdf:type schema:DefinedTerm
    108 Ndf8bf2905d5c42868923cec050b6a0a8 schema:name readcube_id
    109 schema:value 8d95b28aed648152c69377599f4695c033638fbec3e1e8fa07cecae8bcc2097a
    110 rdf:type schema:PropertyValue
    111 Nf5490c24743f4433b0467e682d1e5cd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Artificial Gene Fusion
    113 rdf:type schema:DefinedTerm
    114 Nfab6122b28844b6f838608017bc9088b rdf:first sg:person.0776566454.36
    115 rdf:rest N3ef9a3d0eef9407c9aa97f6f27ee73a8
    116 Nfaca1ee8fe3d4e67b65fac5395911144 schema:name nlm_unique_id
    117 schema:value 0410462
    118 rdf:type schema:PropertyValue
    119 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Biological Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Genetics
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1018957 schema:issn 0090-0028
    126 1476-4687
    127 schema:name Nature
    128 rdf:type schema:Periodical
    129 sg:person.01230412614.56 schema:affiliation N61530214222243fc9825d3251efacd06
    130 schema:familyName Kyrpides
    131 schema:givenName Nikos C.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412614.56
    133 rdf:type schema:Person
    134 sg:person.0630313060.74 schema:familyName Ouzounis
    135 schema:givenName Christos A.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630313060.74
    137 rdf:type schema:Person
    138 sg:person.0765550040.56 schema:familyName Enright
    139 schema:givenName Anton J.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765550040.56
    141 rdf:type schema:Person
    142 sg:person.0776566454.36 schema:familyName Iliopoulos
    143 schema:givenName Ioannis
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776566454.36
    145 rdf:type schema:Person
    146 sg:pub.10.1007/pl00006122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048256009
    147 https://doi.org/10.1007/pl00006122
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/pl00013145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006413497
    150 https://doi.org/10.1007/pl00013145
    151 rdf:type schema:CreativeWork
    152 https://app.dimensions.ai/details/publication/pub.1078342493 schema:CreativeWork
    153 https://app.dimensions.ai/details/publication/pub.1078788684 schema:CreativeWork
    154 https://app.dimensions.ai/details/publication/pub.1082474150 schema:CreativeWork
    155 https://doi.org/10.1002/(sici)1521-1878(199801)20:1<1::aid-bies2>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006685132
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1002/prot.340230413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034134178
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/0014-5793(88)81036-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038888706
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/0076-6879(91)02032-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035742009
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/0958-1669(95)80010-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051814787
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0968-0004(94)90019-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011169384
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/s0076-6879(96)66017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023596106
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0167-7799(98)01245-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032387049
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0959-440x(98)80019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017937673
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0968-0004(98)01274-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011500385
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0969-2126(98)00044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027714152
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1073/pnas.93.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031587796
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1073/pnas.95.11.6239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016472818
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1073/pnas.96.6.2896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023469671
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1073/pnas.96.8.4285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022990732
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1093/bioinformatics/15.5.391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023546769
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1096/fasebj.8.15.8001737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082603368
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1126/science.284.5422.1948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565607
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1126/science.285.5428.751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013411081
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1139/o89-094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020622696
    198 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...